Show simple item record

Vibrational spectra and normal coordinate analysis of CF 3 OF and CF 3 OCl

dc.contributor.authorKuo, J. C.en_US
dc.contributor.authorDesmarteau, D. D.en_US
dc.contributor.authorFateley, W. G.en_US
dc.contributor.authorHammaker, R. M.en_US
dc.contributor.authorMarsden, C. J.en_US
dc.contributor.authorWitt, J. D.en_US
dc.date.accessioned2012-05-21T15:48:43Z
dc.date.available2012-05-21T15:48:43Z
dc.date.issued1980-08en_US
dc.identifier.citationKuo, J. C.; Desmarteau, D. D.; Fateley, W. G.; Hammaker, R. M.; Marsden, C. J.; Witt, J. D. (1980). "Vibrational spectra and normal coordinate analysis of CF 3 OF and CF 3 OCl." Journal of Raman Spectroscopy 9(4): 230-238. <http://hdl.handle.net/2027.42/91176>en_US
dc.identifier.issn0377-0486en_US
dc.identifier.issn1097-4555en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91176
dc.description.abstractThe IR spectra (1400 cm −1 to 160 cm −1 ) of the gases at ambient temperature and the Raman spectra (below 1400 cm −1 ) of the liquids near −196°C are reported for CF 3 OF and CF 3 OCl. All fundamentals are assigned under C s symmetry and the results of a normal coordinate analysis are presented. The assignments of Smardzewski and Fox are adopted with one exception for both CF 3 OF and CF 3 OCl: the CF 3 rock of A ″ symmetry is assigned near 430 cm −1 and the two bands between 200 cm −1 and 300 cm −1 are assigned to an A ′ fundamental, involving CF 3 rocking and COX bending and a Δ ν =2 transition in the CF 3 torsion. An extra band at 548 cm −1 in the Raman spectrum of liquid CF 3 COl near −196°C is assigned to a CF 3 OCl ⃛Cl 2 complex. The values of the force constants d (OX) for CF 3 OX molecules are suggested to be near those for X 2 O molecules. More than half the normal modes of A ′ symmetry show extensive mixing of symmetry coordinates. In some of these cases the symmetry coordinate for which the normal mode is named is the largest but not the dominant contributor to the potential energy distribution, while in others this symmetry coordinate is not even the largest contributor to the potential energy distribution. No normal modes of A ′ symmetry are present in which ν(CO), δ s (CF 3 ), δ(COX), or δ(CF 3 ) symmetry coordinates are dominant, and the mode conventionally labeled as v (CO) should be labeled as ν s (CF 3 ). For the remaining A ′ normal modes and all the A ″ normal modes, the symmetry coordinate for which the normal mode is named is dominant in the potential energy distribution.en_US
dc.publisherJohn Wiley & Sons, Ltd.en_US
dc.titleVibrational spectra and normal coordinate analysis of CF 3 OF and CF 3 OClen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USAen_US
dc.contributor.affiliationotherIBM Corporation, Tucson, Arizona, USAen_US
dc.contributor.affiliationotherDepartment of Chemistry, Melbourne University, Parkville, Victoria 3052, Australiaen_US
dc.contributor.affiliationotherCorporate Chemical Research Laboratory, Allied Chemical Company, Morristown, New Jersey 07960, USAen_US
dc.contributor.affiliationotherDepartment of Chemistry, Kansas State University, Manhattan, Kansas 66506, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91176/1/1250090406_ftp.pdf
dc.identifier.doi10.1002/jrs.1250090406en_US
dc.identifier.sourceJournal of Raman Spectroscopyen_US
dc.identifier.citedreferenceJ. D. Witt and R. M. Hammaker, J. Chem. Phys., 58, 303 ( 1973 ).en_US
dc.identifier.citedreferenceH. H. Classsen, H. Selig and J. Shamir, Appl. Spectrosc., 23, 8 ( 1969 ).en_US
dc.identifier.citedreferenceR. R. Smardzewski and W. B. Fox,U. S. Naval Research Laboratory, Washington DC 20375, USA, private communication to D. D. DesMarteau.en_US
dc.identifier.citedreferenceG. M. Begun, W. H. Fletcher and D. F. Smith, J. Chem. Phys., 42, 2236 ( 1965 ).en_US
dc.identifier.citedreferenceH. Selig, H. H. Claassen and J. H. Holloway, J. Chem. Phys., 52, 3517 ( 1970 ).en_US
dc.identifier.citedreferenceSince low temperature should favor complex formation, the complex is probably not present in the gaseous CF 3 OCl at room temperature. Even if the complex were present in the gas it would probably be too weak to cause the IR inactive stretching of gaseous Cl 2 to become observable in the IR spectrum of the gaseous complex. Thus, the absence of a 548 cm −1 band in the IR spectrum of gaseous CF 3 OCl at room temperature is consistent with the presence of a weak CF 3 OClClCl complex at low temperature.en_US
dc.identifier.citedreferenceE. B. Wilson J., J. C. Decius and P. C. Cross, Molecular Vibrations., McGraw‐Hill, New York ( 1955 ).en_US
dc.identifier.citedreferenceJ. H. Schachtschneider, Vibrational Analysis of Polyatomic Molecules V and VI,Tech. Rept. Nos. 231–64 and 57–65, respectively. Shell Development Co., Houston, Texas.en_US
dc.identifier.citedreferenceFor CF 3 OX the structural parameters are the CF, CO and OX bond lengths and the five angles: FCF angle or α, tilt angle or β, COX angle or γ, the angle each CF bond makes with the C, 3 axis of the CF 3 group of δ, and the FCO angle for the F atom in the FCOX plane or θ. Specification of α and β fixes the angles δ and θ since only two of the four angles α, β, δ and θ are independent. The angle of tilt, β, is in the FCOX plane between the C, 3 axis of the CF 3 group and the C—O bond. For a positive angle of tilt the F atom in the FCOX plane is closer to the O atom than are the two out‐of‐plane F atoms. The following structural parameters were used for both CF 3 OF and CF 3 OCl: R(C—F)= 1.319 Å, R(C—O)= 1.395 Å, α = 109.4°, β = 4.1°, δ = 70.5°, θ = 105.4°. For CF 3 OF, R(O—F) = 1.421 Å, and γ = 104.8°. For CF 3 OCl, R(O—Cl) = 1.70° and γ = 112.8°. These two parameters were estimated by comparison of CF 3 OF with F 2 O 31 and F 2 O 31 with Cl 2 O 31. Since the OF bonds in CF 3 OF and F 2 O differ by only about 0.01 Å, the O—Cl bond length from Cl 2 O is used for CF 3 OCl. Since the Cl—O—Cl angle in Cl 2 O is 8° larger than the F—O—F angle in F 2 O, the Cl—O—Cl angle in CF 3 OCl is taken as 8° larger than the C—O—F angle in CF 3 OF. The principal moments of inertia for CF 3 OF in amu‐Å 2 are 89.6, 164.6 and 166.0 and the asymmetry parameter is −0.98. The principal moments of inertia for CF 3 OCl in amu‐Å 2 are 89.6, 254.9 and 256.4 and the asymmetry parameter is −0.99. The α, β, γ and δ used in this note are defined in Fig. 1 of Ref. 5 and do not correspond to the angles defined in our Fig. 3 in all cases.en_US
dc.identifier.citedreferenceL. E. Sutton (ed.), Tables of Interatomic Distances and Configuration in Molecules and Ions,Special Publication No. 11, p. M67. The Chemical Society, London ( 1958 ).en_US
dc.identifier.citedreferenceL. Pierce, R. Jackson and N. DiCianni, J. Chem. Phys., 35, 2240 ( 1961 ); L. Pierce, N. DiCianni and R. Jackson, J. Chem. Phys., 38, 730 ( 1963 ).en_US
dc.identifier.citedreferenceM. M. Rochkind and G. C. Pimentel, J. Chem. Phys., 42, 1361 ( 1965 ).en_US
dc.identifier.citedreferenceA. Ruoff, H. Bürger and S. Biedermann, Spectrochim. Acta Part A, 27, 1359 ( 1971 ); R. W. Kirk and P. M. Wilt, J. Mol. Spectrosc., 58, 102 ( 1975 ).en_US
dc.identifier.citedreferenceA. Müller and B. Krebs, J. Mol. Spectrosc., 24, 180 ( 1967 ); B. Krebs, A. Müller and A. Fadini, J. Mol. Spectrosc., 24, 198 ( 1967 ); J. L. Duncan, and I. M. Mills, Spectrochim. Acta, 20, 1089 ( 1964 ).en_US
dc.identifier.citedreferenceThe F matrix is 13 × 13 and the off diagonal elements that are set to zero are the following: all involving τ, all involving γ except with l and d, all involving d, except with l and γ.en_US
dc.identifier.citedreferenceJ. F. Ogilvie, Can. J. Spectrosc., 19, 171 ( 1974 ).en_US
dc.identifier.citedreferenceK. O. Christe, C. J. Schack and E. C. Curtis, Inorg. Chem., 10, 1589 ( 1971 ).en_US
dc.identifier.citedreferenceP. N. Noble and G. C. Pimentel, Spectrochim. Acta Part A, 24, 797 ( 1968 ).en_US
dc.identifier.citedreferenceW. B. Fox and G. Franz, Inorg. Chem., 5, 947 ( 1966 ).en_US
dc.identifier.citedreferenceA. F. Clifford, J. Phys. Chem., 63, 1227 ( 1959 ).en_US
dc.identifier.citedreferenceThe mixing of CF 3 group modes with modes of the remainder of the molecule has been reported previously.See for example, E. C. Tuazon, W. G. Fateley and F. F. Bentley, Appl. Spectrosc., 25, 374 ( 1971 ).en_US
dc.identifier.citedreferenceSee Table 15 in Ref. 18.en_US
dc.identifier.citedreferenceA symmetry coordinate is classified as making the dominant contribution to a column in Table 5 if the corresponding entry is greater than 67% of the sum of the entries in that column or if the corresponding entry is a factor of 4 or more larger than the next largest entry in that column.en_US
dc.identifier.citedreferenceThe normal modes in the A ′ block that have reasonable symbols in Table 1 are: CF 3 OF, v, as (CF 3 ) A ′, v,(OF) A ′ and δ as ( CF, 3 ) A ′; CF 3 OCl, v, as (CF 3 ) A ′ and δ as (CF 3 ) A ′.en_US
dc.identifier.citedreferenceThe normal mode symbols where the symmetry coordinate for which the normal modes is named makes the largest but not the dominant contribution are: CF 3 OF, δ s (CF 3 ) A ′, and ρ(CF 3 ) A ′; CF 3 OCl, v,(OCl) A ′ and δ(CF 3 ) A ′.en_US
dc.identifier.citedreferenceThe normal mode symbols where another symmetry coordinate makes the largest contribution are: CF 3 OF, v, s (CF 3 ) A ′, v,(CO) A ′ and δ(COF) A ′; CF 3 OCl, v, s (CF 3 ) A ′, v,(CO) A ′; δ(COCl) A ′ and ρ(CF 3 ) A ′.en_US
dc.identifier.citedreferenceSee Table 1, footnote e.,en_US
dc.identifier.citedreferenceC. J. Hoffman, Chem. Rev., 64, 91 ( 1964 ).en_US
dc.identifier.citedreferenceC. J. Schack and W. Maya, J. Am. Chem. Soc., 91, 2902 ( 1969 ).en_US
dc.identifier.citedreferenceR. T. Lagemann, E. A. Jones and P. J. H. Woltz, J. Chem. Phys., 20, 1768 ( 1952 ).en_US
dc.identifier.citedreferenceP. M. Wilt and E. A. Jones, J. Inorg. Nucl. Chem., 30, 2933 ( 1968 ).en_US
dc.identifier.citedreferenceF. P. Diodati and L. S. Bartell, J. Mol. Struct., 8, 395 ( 1971 ).en_US
dc.identifier.citedreferenceP. Buckley and J. P. Weber, Can. J. Chem., 52, 942 ( 1974 ).en_US
dc.identifier.citedreferenceD. E. Gould, L. R. Anderson, D. E. Young and W. B. Fox, J. Chem. Soc. Chem. Commun., 1564 ( 1968 ).en_US
dc.identifier.citedreferenceR. R. Smardzewski and W. B. Fox, J. Fluorine Chem., 6, 417 ( 1975 ).en_US
dc.identifier.citedreferenceD. D. DesMarteau and R. M. Hammaker,unpublished studies.en_US
dc.identifier.citedreferenceC. J. Marsden, D. D. DesMarteau and L. S. Bartell, Inorg. Chem., 16, 2359 ( 1977 ).en_US
dc.identifier.citedreferenceD. D. DesMarteau, Y. S. Li and J. R. Durig, Inorg. Chem.,(in press).en_US
dc.identifier.citedreferenceR. M. Hammaker and D. D. DesMarteau, Raman Newsl. No. 80 (7 August 1975 ).en_US
dc.identifier.citedreferenceR. M. Hammaker and D. D. DesMarteau,Paper 451, Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy,Cleveland, Ohio, USA( 1976 ).en_US
dc.identifier.citedreferenceJ. R. Durig, W. E. Bucy, L. A. Carreira and C. J. Wurrey, J. Chem. Phys., 60, 1754 ( 1974 ).en_US
dc.identifier.citedreferenceJ. R. Durig, W. E. Bucy and C. J. Wurrey, J. Chem. Phys., 60, 3293 ( 1974 ).en_US
dc.identifier.citedreferenceJ. R. Durig, W. E. Bucy, C. J. Wurrey and L. A. Carreira, J. Phys. Chem., 79, 988 ( 1975 ).en_US
dc.identifier.citedreferenceR. M. Hammaker, W. G. Fateley, Ajit S. Manocha, D. D. DesMarteau, B. J. Streusand and J. R. Durig, J. Raman. Spectrosc., 9, 181 ( 1980 ).en_US
dc.identifier.citedreferenceAjit S. Manocha, MS Thesis,Kansas State University, Manhattan, KS USA( 1978 ).en_US
dc.identifier.citedreferenceA. S. Manocha, D. D. DesMarteau, R. M. Hammaker and C. J. Marsden,in preparation.en_US
dc.identifier.citedreferenceJeng‐chung Kuo,Ms Thesis Kansas State University, Manhattan, KS, USA( 1978 ).en_US
dc.identifier.citedreferenceM. Lustig, A. R. Pitochelli and J. K. Ruff, J. Am. Chem. Soc., 89, 2841 ( 1967 ).en_US
dc.identifier.citedreferenceC. W. Brown, A. G. Hopkins and F. P. Daly, Appl. Spectrosc., 28, 194 ( 1974 ).en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.