Show simple item record

Particulate matter concentrations in residences: an intervention study evaluating stand‐alone filters and air conditioners

dc.contributor.authorBatterman, S.en_US
dc.contributor.authorDu, L.en_US
dc.contributor.authorMentz, G.en_US
dc.contributor.authorMukherjee, B.en_US
dc.contributor.authorParker, E.en_US
dc.contributor.authorGodwin, C.en_US
dc.contributor.authorChin, J.‐y.en_US
dc.contributor.authorO’toole, A.en_US
dc.contributor.authorRobins, T.en_US
dc.contributor.authorRowe, Z.en_US
dc.contributor.authorLewis, T.en_US
dc.date.accessioned2012-05-21T15:48:52Z
dc.date.available2013-08-01T14:04:40Zen_US
dc.date.issued2012-06en_US
dc.identifier.citationBatterman, S.; Du, L.; Mentz, G.; Mukherjee, B.; Parker, E.; Godwin, C.; Chin, J.‐y. ; O’toole, A. ; Robins, T.; Rowe, Z.; Lewis, T. (2012). "Particulate matter concentrations in residences: an intervention study evaluating standâ alone filters and air conditioners." Indoor Air 22(3). <http://hdl.handle.net/2027.42/91183>en_US
dc.identifier.issn0905-6947en_US
dc.identifier.issn1600-0668en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91183
dc.description.abstractThis study, a randomized controlled trial, evaluated the effectiveness of free‐standing air filters and window air conditioners (ACs) in 126 low‐income households of children with asthma. Households were randomized into a control group, a group receiving a free‐standing HEPA filter placed in the child’s sleeping area, and a group receiving the filter and a window‐mounted AC. Indoor air quality (IAQ) was monitored for week‐long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child’s bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84 ± 27%, but dropped to 63 ± 33% in subsequent seasons. In months when households were not visited, use averaged only 34 ± 30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free‐standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. Practical Implications Environmental tobacco smoke (ETS) increased particulate matter (PM) levels by about 14 μg/m 3 and was often detected using ETS‐specific tracers despite restrictions on smoking in the house as reported on questionnaires administered to caregivers. PM concentrations depended on season, filter usage, relative humidity, air exchange ratios, number of children, outdoor PM levels, sweeping/dusting, and presence of a central air conditioner (AC). Free‐standing air filters can be an effective intervention that provides substantial reductions in PM concentrations if the filters are used. However, filter use was variable across the study population and declined over the study duration, and thus strategies are needed to encourage and maintain use of filters. The variability in filter use suggests that exposure misclassification is a potential problem in intervention studies using filters. The installation of a room AC in the bedroom, intended to limit air exchange ratios, along with an air filter, did not lower PM levels more than the filter alone.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherParticulate Matteren_US
dc.subject.otherInterventionen_US
dc.subject.otherAsthmaen_US
dc.subject.otherAir Conditioneren_US
dc.subject.otherAir Filtersen_US
dc.subject.otherAir Exchange Rateen_US
dc.titleParticulate matter concentrations in residences: an intervention study evaluating stand‐alone filters and air conditionersen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Public Health, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumSchool of Medicine, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherCommunity Action Against Asthma, Community Partner at Large, Detroit, MI, USAen_US
dc.contributor.affiliationotherCollege of Public Health, University of Iowa, Iowa City, IA, USAen_US
dc.contributor.affiliationotherSchool of Environmental Science and Engineering, Donghua University, Shanghai, Chinaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91183/1/j.1600-0668.2011.00761.x.pdf
dc.identifier.doi10.1111/j.1600-0668.2011.00761.xen_US
dc.identifier.sourceIndoor Airen_US
dc.identifier.citedreferenceMcCormack, M.C., Breysse, P.N., Matsui, E.C., Hansel, N.N., Williams, D., Curtin‐Brosnan, J., Eggleston, P., Diette, G.B. and Ctr Childhood Asthma Urban, E. ( 2009 ) In‐home particle concentrations and childhood asthma morbidity, Environ. Health Perspect., 117, 294 – 298.en_US
dc.identifier.citedreferenceBatterman, S., Godwin, C. and Jia, C.R. ( 2005 ) Long duration tests of room air filters in cigarette smokers’ homes, Environ. Sci. Technol., 39, 7260 – 7268.en_US
dc.identifier.citedreferenceBatterman, S., Jia, C.R., Hatzivasilis, G. and Godwin, C. ( 2006 ) Simultaneous measurement of ventilation using tracer gas techniques and VOC concentrations in homes, garages and vehicles, J. Environ. Monitor., 8, 249 – 256.en_US
dc.identifier.citedreferenceBreen, M.S., Breen, M., Williams, R.W. and Schultz, B.D. ( 2010 ) Predicting residential air exchange rates from questionnaires and meteorology: model evaluation in central north Carolina, Environ. Sci. Technol., 44, 9349 – 9356.en_US
dc.identifier.citedreferenceBreysse, P.N., Buckley, T.J., Williams, D., Beck, C.M., Jo, S.J., Merriman, B., Kanchanaraksa, S., Swartz, L.J., Callahan, K.A., Butz, A.M., Rand, C.S., Diette, G.B., Krishnan, J.A., Moseley, A.M., Curtin‐Brosnan, J., Durkin, N.B. and Eggleston, P.A. ( 2005 ) Indoor exposures to air pollutants and allergens in the homes of asthmatic children in inner‐city Baltimore, Environ. Res., 98, 167 – 176.en_US
dc.identifier.citedreferenceCenter for Urban Studies., W.S.U. ( 2000 ) 2000 Census Demographic Profile of City of Detroit, Available online at http://www.cus.wayne.edu/content/profiles/00SP1DetroitTracts.pdf, accessed on 15 Aug 2011.en_US
dc.identifier.citedreferenceCharles, S.M., Jia, C., Batterman, S.A. and Godwin, C. ( 2008 ) VOC and particulate emissions from commercial cigarettes: analysis of 2,5‐DMF as an ETS tracer, Environ. Sci. Technol., 42, 1324 – 1331.en_US
dc.identifier.citedreferenceCrain, E.F., Walter, M., O’connor, G.T., Mitchell, H., Gruchalla, R.S., Kattan, M., Malindzak, G.S., Enright, P., Evans, R., Morgan, W. and Stout, J.W. ( 2002 ) Home and allergic characteristics of children with asthma in seven US urban communities and design of an environmental intervention: the Inner‐City Asthma Study, Environ. Health Perspect., 110, 939 – 945.en_US
dc.identifier.citedreferenceDelfino, R.J., Zeiger, R.S., Seltzer, J.M., Street, D.H., Matteucci, R.M., Anderson, P.R. and Koutrakis, P. ( 1997 ) The effect of outdoor fungal spore concentrations on daily asthma severity, Environ. Health Perspect., 105, 622 – 635.en_US
dc.identifier.citedreferenceDu, L., Batterman, S., Parker, E.A., Godwin, C., Chin, J.‐Y., O’toole, A., Robins, T.G., Brakefield‐Caldwell, W. and Lewis, T. ( 2011 ) Particle concentrations and effectiveness of free‐standing air filters in bedrooms of children with asthma in Detroit, Michigan, Build. Environ., 46, 2303 – 2313.en_US
dc.identifier.citedreferenceEggleston, P.A., Butz, A., Rand, C., Curtin‐Brosnan, J., Kanchanaraksa, S., Swartz, L., Breysse, P., Buckley, T., Diette, G., Merriman, B. and Krishnan, J.A. ( 2005 ) Home environmental intervention in inner‐city asthma: a randomized controlled clinical trial, Ann. Allergy Asthma Immunol., 95, 518 – 524.en_US
dc.identifier.citedreferenceHeroux, M.E., Clark, N., Van Ryswyk, K., Mallick, R., Gilbert, N.L., Harrison, I., Rispler, K., Wang, D., Anastassopoulos, A., Guay, M., Macneill, M. and Wheeler, A.J. ( 2010 ) Predictors of indoor air concentrations in smoking and non‐smoking residences, Int. J. Environ. Res. Public Health, 7, 3080 – 3099.en_US
dc.identifier.citedreferenceHussein, T., Korhonen, H., Herrmann, E., Hameri, K.H., Lehtinen, K.E.J. and Kulmala, M. ( 2005 ) Emission rates due to indoor activities: indoor aerosol model development, evaluation, and applications, Aerosol Sci. Technol., 39, 1111 – 1127.en_US
dc.identifier.citedreferenceJia, C., Batterman, S. and Godwin, C. ( 2007 ) Continuous, intermittent and passive sampling of airborne VOCs, J. Environ. Monitor., 9, 1220 – 1230.en_US
dc.identifier.citedreferenceKeeler, G.J., Dvonch, J.T., Yip, F.Y., Parker, E.A., Israel, B.A., Marsik, F.J., Morishita, M., Barres, J.A., Robins, T.G., Brakefield‐Caldwell, W. and Sam, M. ( 2002 ) Assessment of personal and community‐level exposures to particulate matter among children with asthma in Detroit, Michigan, as part of Community Action Against Asthma (CAAA), Environ. Health Perspect., 110, 173 – 181.en_US
dc.identifier.citedreferenceKlepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar, J.V., Hern, S.C. and Engelmann, W.H. ( 2001 ) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants, J. Expo. Anal. Environ. Epidemiol., 11, 231 – 252.en_US
dc.identifier.citedreferenceLai, H.K., Bayer‐Oglesby, L., Colvile, R., Gotschi, T., Jantunen, M.J., Kunzli, N., Kulinskaya, E., Schweizer, C. and Nieuwenhuijsen, M.J. ( 2006 ) Determinants of indoor air concentrations of PM 2.5, black smoke and NO 2 in six European cities (EXPOLIS study), Atmos. Environ., 40, 1299 – 1313.en_US
dc.identifier.citedreferenceLeBouf, R., Yesse, L. and Rossner, A. ( 2008 ) Seasonal and diurnal variability in airborne mold from an indoor residential environment in northern New York, J. Air Waste Manag. Assoc., 58, 684 – 692.en_US
dc.identifier.citedreferenceLewis, T.C., Robins, T.G., Joseph, C.L.M., Parker, E.A., Israel, B.A., Rowe, Z., Edgren, K.K., Salinas, M.A., Martinez, M.E. and Brown, R.W. ( 2004 ) Identification of gaps in the diagnosis and treatment of childhood asthma using a community‐based participatory research approach, J. Urban Health, 81, 472 – 488.en_US
dc.identifier.citedreferenceLintner, T.J. and Brame, K.A. ( 1993 ) The effects of season, climate, and air‐conditioning on the prevalence of Dermatophagoides mite allergens in household dust, J. Allergy Clin. Immunol., 91, 862 – 867.en_US
dc.identifier.citedreferenceMacintosh, D.L., Myatt, T.A., Ludwig, J.F., Baker, B.J., Suh, H.H. and Spengler, J.D. ( 2008 ) Whole house particle removal and clean air delivery rates for in‐duct and portable ventilation systems, J. Air Waste Manag. Assoc., 58, 1474 – 1482.en_US
dc.identifier.citedreferenceMcCormack, M.C., Breysse, P.N., Hansel, N.N., Matsui, E.C., Tonorezos, E.S., Curtin‐Brosnan, J., Williams, D.L., Buckley, T.J., Eggleston, P.A. and Diette, G.B. ( 2008 ) Common household activities are associated with elevated particulate matter concentrations in bedrooms of inner‐city Baltimore pre‐school children, Environ. Res., 106, 148 – 155.en_US
dc.identifier.citedreferenceMeng, Q.Y., Spector, D., Colome, S. and Turpin, B. ( 2009 ) Determinants of indoor and personal exposure to PM 2.5 of indoor and outdoor origin during the RIOPA study, Atmos. Environ., 43, 5750 – 5758.en_US
dc.identifier.citedreferenceMorey, P.R., Crawfird, G.B. and Rottersman, R.B. ( 2011 ) Indoor air quality in nonindustrial occupational environments. In: Rose, V.E. and Chohrssen, B. (eds) Patty’s Industrial Hygiene, 6th edn, New York, John Wiley & Sons, Inc, 2377 – 2468.en_US
dc.identifier.citedreferenceMunir, A.K.M., Bjorksten, B., Einarsson, R., Schou, C., Ekstrandtobin, A., Warner, A. and Kjellman, N.I.M. ( 1994 ) Cat (Fel d I), Dog (Can f I), and cockroach allergens in homes of asthmatic children from 3 climatic zones in Sweden, Allergy, 49, 508 – 516.en_US
dc.identifier.citedreferenceNazaroff, W.W., Hung, W.Y., Sasse, A. and Gadgil, A.J. ( 1993 ) Predicting regional lung deposition of environmental tobacco‐smoke particles, Aerosol Sci. Technol., 19, 243 – 254.en_US
dc.identifier.citedreferenceRodes, C.E., Lawless, P.A., Thornburg, J.W., Williams, R.W. and Croghan, C.W. ( 2010 ) DEARS particulate matter relationships for personal, indoor, outdoor, and central site settings for a general population, Atmos. Environ., 44, 1386 – 1399.en_US
dc.identifier.citedreferenceScapellato, M.L., Canova, C., De Simone, A., Carrieri, M., Maestrelli, P., Simonato, L. and Bartolucci, G.B. ( 2009 ) Personal PM 10 exposure in asthmatic adults in Padova, Italy: seasonal variability and factors affecting individual concentrations of particulate matter, Int. J. Hyg. Environ. Health, 212, 626 – 636.en_US
dc.identifier.citedreferenceSublett, J.L., Seltzer, J., Burkhead, R., Williams, P.B., Wedner, H.J. and Phipatanakul, W. ( 2010 ) Air filters and air cleaners: rostrum by the American Academy of Allergy, Asthma & Immunology Indoor Allergen Committee, J. Allergy Clin. Immunol., 125, 32 – 38.en_US
dc.identifier.citedreferenceThornburg, T., Rodes, C.E., Lawless, P.A. and Williams, R. ( 2009 ) Spatial and temporal variability of outdoor coarse particulate matter mass concentrations measured with a new coarse particle sampler during the Detroit Exposure and Aerosol Research Study, Atmos. Environ., 43, 4251 – 4258.en_US
dc.identifier.citedreferenceVanderheide, S., Kauffman, H.F., Dubois, A.E.J. and Demonchy, J.G.R. ( 1997 ) Allergen reduction measures in houses of allergic asthmatic patients: effects of air‐cleaners and allergen‐impermeable mattress covers, Eur. Respir. J., 10, 1217 – 1223.en_US
dc.identifier.citedreferenceWallace, L. ( 1996 ) Indoor particles: a review, J. Air Waste Manag. Assoc., 46, 98 – 126.en_US
dc.identifier.citedreferenceWeisel, C.P., Zhang, J., Turpin, B.J., Morandi, M.T., Colome, S., Stock, T.H. and Spektor, D.M. ( 2005 ) Relationships of Indoor, Outdoor, and Personal Air (RIOPA) Part I. Collection Methods and Descriptive Analyses, Available online at http://www.sph.uth.tmc.edu/mleland/Pages/Press%20Releases/RIOPA%20Part%20I%20Whole%20Book%20Web%20secure.pdf, accessed on 30 July 2011.en_US
dc.identifier.citedreferenceWilliams, R., Rea, A., Vette, A., Croghan, C., Whitaker, D., Stevens, C., Mcdow, S., Fortmann, R., Sheldon, L., Wilson, H., Thornburg, J., Phillips, M., Lawless, P., Rodes, C. and Daughtrey, H. ( 2009 ) The design and field implementation of the Detroit Exposure and Aerosol Research Study, J. Expo. Sci. Environ. Epidemiol., 19, 643 – 659.en_US
dc.identifier.citedreferenceXu, Y., Raja, S., Ferro, A.R., Jaques, P.A., Hopke, P.K., Gressani, C. and Wetzel, L.E. ( 2010 ) Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children’s health, Build. Environ., 45, 330 – 337.en_US
dc.identifier.citedreferenceZheng, B. ( 2000 ) Summarizing the goodness of fit on generalized linear models for longitudinal data, Stat. Med., 19, 1265 – 1275.en_US
dc.identifier.citedreferenceAbt, E., Suh, H.H., Allen, G. and Koutrakis, P. ( 2000 ) Characterization of indoor particle sources: a study conducted in the metropolitan Boston area, Environ. Health Perspect., 108, 35 – 44.en_US
dc.identifier.citedreferenceAllen, R., Larson, T., Sheppard, L., Wallace, L. and Liu, L.J.S. ( 2003 ) Use of real‐time light scattering data to estimate the contribution of infiltrated and indoor‐generated particles to indoor air, Environ. Sci. Technol., 37, 3484 – 3492.en_US
dc.identifier.citedreferenceArlian, L.G., Neal, J.S., Morgan, M.S., Vyszenski‐Moher, D.L., Rapp, C.M. and Alexander, A.K. ( 2001 ) Reducing relative humidity is a practical way to control dust mites and their allergens in homes in temperate climates, J. Allergy Clin. Immunol., 107, 99 – 104.en_US
dc.identifier.citedreferenceBatterman, S., Metts, T., Kalliokoski, P. and Barnett, E. ( 2002 ) Low‐flow active and passive sampling of VOCs using thermal desorption tubes: theory and application at an offset printing facility, J. Environ. Monitor., 4, 361 – 370.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.