Show simple item record

Effect of oxidative stress on protein tyrosine phosphatase 1B in scleroderma dermal fibroblasts

dc.contributor.authorTsou, Pei‐suenen_US
dc.contributor.authorTalia, Nadine N.en_US
dc.contributor.authorPinney, Adam J.en_US
dc.contributor.authorKendzicky, Annen_US
dc.contributor.authorPiera‐velazquez, Sonsolesen_US
dc.contributor.authorJimenez, Sergio A.en_US
dc.contributor.authorSeibold, James R.en_US
dc.contributor.authorPhillips, Kristineen_US
dc.contributor.authorKoch, Alisa E.en_US
dc.date.accessioned2012-06-15T14:32:58Z
dc.date.available2013-08-01T14:04:38Zen_US
dc.date.issued2012-06en_US
dc.identifier.citationTsou, Pei‐suen ; Talia, Nadine N.; Pinney, Adam J.; Kendzicky, Ann; Piera‐velazquez, Sonsoles ; Jimenez, Sergio A.; Seibold, James R.; Phillips, Kristine; Koch, Alisa E. (2012). "Effect of oxidative stress on protein tyrosine phosphatase 1B in scleroderma dermal fibroblasts." Arthritis & Rheumatism 64(6): 1978-1989. <http://hdl.handle.net/2027.42/91336>en_US
dc.identifier.issn0004-3591en_US
dc.identifier.issn1529-0131en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91336
dc.description.abstractObjective Platelet‐derived growth factor (PDGF) and its receptor, PDGFR, promote fibrosis in systemic sclerosis (SSc; scleroderma) dermal fibroblasts, and such cells in scleroderma skin lesions produce excessive reactive oxygen species (ROS). PDGFR is phosphorylated upon PDGF stimulation, and is dephosphorylated by protein tyrosine phosphatases (PTPs), including PTP1B. This study was undertaken to determine whether the thiol‐sensitive PTP1B is affected by ROS in SSc dermal fibroblasts, thereby enhancing the phosphorylation of PDGFR and synthesis of type I collagen. This study also sought to investigate the effect of a thiol antioxidant, N ‐acetylcysteine (NAC), in SSc. Methods Fibroblasts were isolated from the skin of patients with diffuse SSc and normal healthy donors for cell culture experiments and immunofluorescence analyses. A phosphate release assay was used to determine the activity of PTP1B. Results Levels of ROS and type I collagen were significantly higher and amounts of free thiol were significantly lower in SSc fibroblasts compared to normal fibroblasts. After stimulation with PDGF, not only were PDGFR and ERK‐1/2 phosphorylated to a greater extent, but also the ability to produce PTP1B was hampered in SSc fibroblasts. The activity of PTP1B was significantly inactivated in SSc fibroblasts as a result of cysteine oxidation by the raised levels of ROS, which was confirmed by the oxidation of multiple PTPs, including PTP1B, in SSc fibroblasts. Decreased expression of PTP1B in normal fibroblasts led to increased expression of type I collagen. Treatment of the cells with NAC restored the activity of PTP1B, improved the profile of PDGFR phosphorylation, decreased the numbers of tyrosine‐phosphorylated proteins and levels of type I collagen, and scavenged ROS in SSc fibroblasts. Conclusion This study describes a new mechanism by which ROS may promote a profibrotic phenotype in SSc fibroblasts through the oxidative inactivation of PTP1B, leading to pronounced activation of PDGFR. The study also presents a novel molecular mechanism by which NAC may act on ROS and PTP1B to provide therapeutic benefit in SSc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.titleEffect of oxidative stress on protein tyrosine phosphatase 1B in scleroderma dermal fibroblastsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeriatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan Medical School, Room 4045 BSRB, 109 Zina Pitcher Drive, Ann Arbor, MI 48109‐2200en_US
dc.contributor.affiliationumVA Medical Service, Ann Arbor, Michigan and University of Michigan Medical School, Ann Arboren_US
dc.contributor.affiliationumUniversity of Michigan Medical School, Ann Arboren_US
dc.contributor.affiliationotherThomas Jefferson University, Philadelphia, Pennsylvaniaen_US
dc.contributor.affiliationotherScleroderma Research Consultants, Avon, Connecticuten_US
dc.contributor.affiliationotherUniversity of Connecticut Health Center, Farmingtonen_US
dc.identifier.pmid22161819en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91336/1/34336_ftp.pdf
dc.identifier.doi10.1002/art.34336en_US
dc.identifier.sourceArthritis & Rheumatismen_US
dc.identifier.citedreferenceFiruzi O, Fuksa L, Spadaro C, Bousova I, Riccieri V, Spadaro A, et al. Oxidative stress parameters in different systemic rheumatic diseases. J Pharm Pharmacol 2006; 58: 951 – 7.en_US
dc.identifier.citedreferenceSambo P, Amico D, Giacomelli R, Matucci‐Cerinic M, Salsano F, Valentini G, et al. Intravenous N‐acetylcysteine for treatment of Raynaud's phenomenon secondary to systemic sclerosis: a pilot study. J Rheumatol 2001; 28: 2257 – 62.en_US
dc.identifier.citedreferenceFailli P, Palmieri L, D'Alfonso C, Giovannelli L, Generini S, Rosso AD, et al. Effect of N‐acetyl‐L‐cysteine on peroxynitrite and superoxide anion production of lung alveolar macrophages in systemic sclerosis. Nitric Oxide 2002; 7: 277 – 82.en_US
dc.identifier.citedreferenceRosato E, Borghese F, Pisarri S, Salsano F. The treatment with N‐acetylcysteine of Raynaud's phenomenon and ischemic ulcers therapy in sclerodermic patients: a prospective observational study of 50 patients. Clin Rheumatol 2009; 28: 1379 – 84.en_US
dc.identifier.citedreferenceDemedts M, Behr J, Buhl R, Costabel U, Dekhuijzen R, Jansen HM, et al. High‐dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med 2005; 353: 2229 – 42.en_US
dc.identifier.citedreferenceAruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N‐acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 1989; 6: 593 – 7.en_US
dc.identifier.citedreferenceCeconi C, Curello S, Cargnoni A, Ferrari R, Albertini A, Visioli O. The role of glutathione status in the protection against ischaemic and reperfusion damage: effects of N‐acetyl cysteine. J Mol Cell Cardiol 1988; 20: 5 – 13.en_US
dc.identifier.citedreferenceFung HL, Chong S, Kowaluk E, Hough K, Kakemi M. Mechanisms for the pharmacologic interaction of organic nitrates with thiols: existence of an extracellular pathway for the reversal of nitrate vascular tolerance by N‐acetylcysteine. J Pharmacol Exp Ther 1988; 245: 524 – 30.en_US
dc.identifier.citedreferenceDenu JM, Tanner KG. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 1998; 37: 5633 – 42.en_US
dc.identifier.citedreferenceMeng TC, Fukada T, Tonks NK. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 2002; 9: 387 – 99.en_US
dc.identifier.citedreferenceKlinghoffer RA, Kazlauskas A. Identification of a putative Syp substrate, the PDGF β receptor. J Biol Chem 1995; 270: 22208 – 17.en_US
dc.identifier.citedreferenceLiu F, Chernoff J. Protein tyrosine phosphatase 1B interacts with and is tyrosine phosphorylated by the epidermal growth factor receptor. Biochem J 1997; 327: 139 – 45.en_US
dc.identifier.citedreferenceLouneva N, Huaman G, Fertala J, Jimenez SA. Inhibition of systemic sclerosis dermal fibroblast type I collagen production and gene expression by simvastatin. Arthritis Rheum 2006; 54: 1298 – 308.en_US
dc.identifier.citedreferenceAllanore Y, Borderie D, Perianin A, Lemarechal H, Ekindjian OG, Kahan A. Nifedipine protects against overproduction of superoxide anion by monocytes from patients with systemic sclerosis. Arthritis Res Ther 2005; 7: R93 – 100.en_US
dc.identifier.citedreferenceAllanore Y, Borderie D, Lemarechal H, Ekindjian OG, Kahan A. Acute and sustained effects of dihydropyridine‐type calcium channel antagonists on oxidative stress in systemic sclerosis. Am J Med 2004; 116: 595 – 600.en_US
dc.identifier.citedreferenceAkhmetshina A, Venalis P, Dees C, Busch N, Zwerina J, Schett G, et al. Treatment with imatinib prevents fibrosis in different preclinical models of systemic sclerosis and induces regression of established fibrosis. Arthritis Rheum 2009; 60: 219 – 24.en_US
dc.identifier.citedreferenceSamuel G, Bujor A, Nakerakanti S, Hant F, Trojanowska M. Autocrine transforming growth factor β signaling regulates extracellular signal‐regulated kinase 1/2 phosphorylation via modulation of protein phosphatase 2A expression in scleroderma fibroblasts. Fibrogenesis Tissue Repair 2010; 3: 25.en_US
dc.identifier.citedreferenceHaj FG, Markova B, Klaman LD, Bohmer FD, Neel BG. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase‐1B. J Biol Chem 2003; 278: 739 – 44.en_US
dc.identifier.citedreferenceByon JC, Kusari AB, Kusari J. Protein‐tyrosine phosphatase‐1B acts as a negative regulator of insulin signal transduction. Mol Cell Biochem 1998; 182: 101 – 8.en_US
dc.identifier.citedreferenceZabolotny JM, Bence‐Hanulec KK, Stricker‐Krongrad A, Haj F, Wang Y, Minokoshi Y, et al. PTP1B regulates leptin signal transduction in vivo. Dev Cell 2002; 2: 489 – 95.en_US
dc.identifier.citedreferenceFlint AJ, Tiganis T, Barford D, Tonks NK. Development of “substrate‐trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci U S A 1997; 94: 1680 – 5.en_US
dc.identifier.citedreferenceAoki N, Matsuda T. A cytosolic protein‐tyrosine phosphatase PTP1B specifically dephosphorylates and deactivates prolactin‐activated STAT5a and STAT5b. J Biol Chem 2000; 275: 39718 – 26.en_US
dc.identifier.citedreferenceChiarugi P, Cirri P. Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci 2003; 28: 509 – 14.en_US
dc.identifier.citedreferenceLou YW, Chen YY, Hsu SF, Chen RK, Lee CL, Khoo KH, et al. Redox regulation of the protein tyrosine phosphatase PTP1B in cancer cells. FEBS J 2008; 275: 69 – 88.en_US
dc.identifier.citedreferenceSfrent‐Cornateanu R, Mihai C, Stoian I, Lixandru D, Bara C, Moldoveanu E. Antioxidant defense capacity in scleroderma patients. Clin Chem Lab Med 2008; 46: 836 – 41.en_US
dc.identifier.citedreferenceAmmendola R, Ruocchio MR, Chirico G, Russo L, De Felice C, Esposito F, et al. Inhibition of NADH/NADPH oxidase affects signal transduction by growth factor receptors in normal fibroblasts. Arch Biochem Biophys 2002; 397: 253 – 7.en_US
dc.identifier.citedreferenceKappert K, Sparwel J, Sandin A, Seiler A, Siebolts U, Leppanen O, et al. Antioxidants relieve phosphatase inhibition and reduce PDGF signaling in cultured VSMCs and in restenosis. Arterioscler Thromb Vasc Biol 2006; 26: 2644 – 51.en_US
dc.identifier.citedreferenceKovalenko M, Denner K, Sandstrom J, Persson C, Gross S, Jandt E, et al. Site‐selective dephosphorylation of the platelet‐derived growth factor β‐receptor by the receptor‐like protein‐tyrosine phosphatase DEP‐1. J Biol Chem 2000; 275: 16219 – 26.en_US
dc.identifier.citedreferenceLeRoy EC. Increased collagen synthesis by scleroderma skin fibroblasts in vitro: a possible defect in the regulation or activation of the scleroderma fibroblast. J Clin Invest 1974; 54: 880 – 9.en_US
dc.identifier.citedreferenceJelaska A, Korn JH. Role of apoptosis and transforming growth factor β1 in fibroblast selection and activation in systemic sclerosis. Arthritis Rheum 2000; 43: 2230 – 9.en_US
dc.identifier.citedreferencePandolfi A, Florita M, Altomare G, Pigatto P, Donati MB, Poggi A. Increased plasma levels of platelet‐derived growth factor activity in patients with progressive systemic sclerosis. Proc Soc Exp Biol Med 1989; 191: 1 – 4.en_US
dc.identifier.citedreferenceGay S, Jones RE Jr, Huang GQ, Gay RE. Immunohistologic demonstration of platelet‐derived growth factor (PDGF) and sis‐oncogene expression in scleroderma. J Invest Dermatol 1989; 92: 301 – 3.en_US
dc.identifier.citedreferenceKlareskog L, Gustafsson R, Scheynius A, Hallgren R. Increased expression of platelet‐derived growth factor type B receptors in the skin of patients with systemic sclerosis. Arthritis Rheum 1990; 33: 1534 – 41.en_US
dc.identifier.citedreferenceYamakage A, Kikuchi K, Smith EA, LeRoy EC, Trojanowska M. Selective upregulation of platelet‐derived growth factor α receptors by transforming growth factor β in scleroderma fibroblasts. J Exp Med 1992; 175: 1227 – 34.en_US
dc.identifier.citedreferenceKawaguchi Y, Hara M, Wright TM. Endogenous IL‐1α from systemic sclerosis fibroblasts induces IL‐6 and PDGF‐A. J Clin Invest 1999; 103: 1253 – 60.en_US
dc.identifier.citedreferenceSvegliati S, Cancello R, Sambo P, Luchetti M, Paroncini P, Orlandini G, et al. Platelet‐derived growth factor and reactive oxygen species (ROS) regulate Ras protein levels in primary human fibroblasts via ERK1/2: amplification of ROS and Ras in systemic sclerosis fibroblasts. J Biol Chem 2005; 280: 36474 – 82.en_US
dc.identifier.citedreferenceLi JM, Shah AM. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 2004; 287: R1014 – 30.en_US
dc.identifier.citedreferenceBruckdorfer KR, Hillary JB, Bunce T, Vancheeswaran R, Black CM. Increased susceptibility to oxidation of low‐density lipoproteins isolated from patients with systemic sclerosis. Arthritis Rheum 1995; 38: 1060 – 7.en_US
dc.identifier.citedreferenceSambo P, Baroni SS, Luchetti M, Paroncini P, Dusi S, Orlandini G, et al. Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up‐regulation of reactive oxygen species generation through the NADPH oxidase complex pathway. Arthritis Rheum 2001; 44: 2653 – 64.en_US
dc.identifier.citedreferenceSambo P, Jannino L, Candela M, Salvi A, Donini M, Dusi S, et al. Monocytes of patients with systemic sclerosis (scleroderma) spontaneously release in vitro increased amounts of superoxide anion. J Invest Dermatol 1999; 112: 78 – 84.en_US
dc.identifier.citedreferenceOgawa F, Shimizu K, Muroi E, Hara T, Hasegawa M, Takehara K, et al. Serum levels of 8‐isoprostane, a marker of oxidative stress, are elevated in patients with systemic sclerosis. Rheumatology (Oxford) 2006; 45: 815 – 8.en_US
dc.identifier.citedreferenceServettaz A, Guilpain P, Goulvestre C, Chereau C, Hercend C, Nicco C, et al. Radical oxygen species production induced by advanced oxidation protein products predicts clinical evolution and response to treatment in systemic sclerosis. Ann Rheum Dis 2007; 66: 1202 – 9.en_US
dc.identifier.citedreferenceBlake DR, Winyard P, Scott DG, Brailsford S, Blann A, Lunec J. Endothelial cell cytotoxicity in inflammatory vascular diseases—the possible role of oxidised lipoproteins. Ann Rheum Dis 1985; 44: 176 – 82.en_US
dc.identifier.citedreferenceMurrell GA, Francis MJ, Bromley L. Modulation of fibroblast proliferation by oxygen free radicals. Biochem J 1990; 265: 659 – 65.en_US
dc.identifier.citedreferenceKing MR, Ismail AS, Davis LS, Karp DR. Oxidative stress promotes polarization of human T cell differentiation toward a T helper 2 phenotype. J Immunol 2006; 176: 2765 – 72.en_US
dc.identifier.citedreferenceFinch WR, Rodnan GP, Buckingham RB, Prince RK, Winkelstein A. Bleomycin‐induced scleroderma. J Rheumatol 1980; 7: 651 – 9.en_US
dc.identifier.citedreferenceYamamoto T, Takagawa S, Katayama I, Yamazaki K, Hamazaki Y, Shinkai H, et al. Animal model of sclerotic skin. I. local injections of bleomycin induce sclerotic skin mimicking scleroderma. J Invest Dermatol 1999; 112: 456 – 62.en_US
dc.identifier.citedreferenceServettaz A, Goulvestre C, Kavian N, Nicco C, Guilpain P, Chereau C, et al. Selective oxidation of DNA topoisomerase 1 induces systemic sclerosis in the mouse. J Immunol 2009; 182: 5855 – 64.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.