Show simple item record

Sample variance in photometric redshift calibration: cosmological biases and survey requirements

dc.contributor.authorCunha, Carlos E.en_US
dc.contributor.authorHuterer, Draganen_US
dc.contributor.authorBusha, Michael T.en_US
dc.contributor.authorWechsler, Risa H.en_US
dc.date.accessioned2012-06-15T14:33:02Z
dc.date.available2013-08-01T14:04:38Zen_US
dc.date.issued2012-06-11en_US
dc.identifier.citationCunha, Carlos E.; Huterer, Dragan; Busha, Michael T.; Wechsler, Risa H. (2012). "Sample variance in photometric redshift calibration: cosmological biases and survey requirements." Monthly Notices of the Royal Astronomical Society 423(1). <http://hdl.handle.net/2027.42/91339>en_US
dc.identifier.issn0035-8711en_US
dc.identifier.issn1365-2966en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91339
dc.description.abstractWe use N ‐body/photometric galaxy simulations to examine the impact of sample variance of spectroscopic redshift samples on the accuracy of photometric redshift (photo‐ z ) determination and calibration of photo‐ z errors. We estimate the biases in the cosmological parameter constraints from weak lensing and derive requirements on the spectroscopic follow‐up for three different photo‐ z algorithms chosen to broadly span the range of algorithms available. We find that sample variance is much more relevant for the photo‐ z error calibration than for photo‐ z training, implying that follow‐up requirements are similar for different algorithms. We demonstrate that the spectroscopic sample can be used for training of photo‐ z s and error calibration without incurring additional bias in the cosmological parameters. We provide a guide for observing proposals for the spectroscopic follow‐up to ensure that redshift calibration biases do not dominate the cosmological parameter error budget. For example, assuming optimistically (pessimistically) that the weak lensing shear measurements from the Dark Energy Survey could obtain 1σ constraints on the dark energy equation of state w of 0.035 (0.055), implies a follow‐up requirement of 150 (40) patches of sky with a telescope such as Magellan, assuming a 1/8 deg 2 effective field of view and 400 galaxies per patch. Assuming (optimistically) a VIMOS‐VLT Deep Survey‐like spectroscopic completeness with purely random failures, this could be accomplished with about 75 (20) nights of observation. For more realistic assumptions regarding spectroscopic completeness, or with the presence of other sources of systematics not considered here, further degradations to dark energy constraints are possible. We test several approaches for making the requirements less stringent. For example, if the redshift distribution of the overall sample can be estimated by some other technique, e.g. cross‐correlation, then follow‐up requirements could be reduced by an order of magnitude.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherDark Energyen_US
dc.subject.otherLarge‐Scale Structure of Universeen_US
dc.subject.otherCosmological Parametersen_US
dc.subject.otherCosmology: Observationsen_US
dc.subject.otherCosmology: Theoryen_US
dc.titleSample variance in photometric redshift calibration: cosmological biases and survey requirementsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109‐1040, USAen_US
dc.contributor.affiliationotherKavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USAen_US
dc.contributor.affiliationotherInstitute for Theoretical Physics, University of Zurich, 8057 Zurich, Switzerlanden_US
dc.contributor.affiliationotherDepartment of Physics, Stanford University, Stanford, CA 94305, USAen_US
dc.contributor.affiliationotherSLAC National Accelerator Laboratory, 2575 Sand Hill Rd., MS 29, Menlo Park, CA 94025, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91339/1/j.1365-2966.2012.20927.x.pdf
dc.identifier.doi10.1111/j.1365-2966.2012.20927.xen_US
dc.identifier.sourceMonthly Notices of the Royal Astronomical Societyen_US
dc.identifier.citedreferenceKitching T. D., Taylor A. N., Heavens A. F., 2008, MNRAS, 389, 173en_US
dc.identifier.citedreferenceHuterer D., 2002, Phys. Rev. D, 65, 063001en_US
dc.identifier.citedreferenceHuterer D., 2010, Gen. Relativ. Gravity, 42, 2177en_US
dc.identifier.citedreferenceHuterer D., Linder E. V., 2007, Phys. Rev. D, 75, 023519en_US
dc.identifier.citedreferenceHuterer D., Turner M. S., 2001, Phys. Rev. D, 64, 123527en_US
dc.identifier.citedreferenceHuterer D., Takada M., Bernstein G., Jain B., 2006, MNRAS, 366, 101en_US
dc.identifier.citedreferenceIlbert O. et al., 2006, A&A, 457, 841en_US
dc.identifier.citedreferenceIshak M., Hirata C. M., 2005, Phys. Rev. D, 71, 023002en_US
dc.identifier.citedreferenceJouvel S. et al., 2009, A&A, 504, 359en_US
dc.identifier.citedreferenceKirk D., Laszlo I., Bridle S., Bean R., 2011, preprint (arXiv:1109.4536)en_US
dc.identifier.citedreferenceKnox L., Scoccimarro R., Dodelson S., 1998, Phys. Rev. Lett., 81, 2004en_US
dc.identifier.citedreferenceKoo D. C., 1999, in Weymann R., Storrie‐Lombardi L., Sawicki M., Brunner R., eds, ASP Conf. Ser. Vol. 191, Photometric Redshifts and the Detection of High Redshift Galaxies. Astron. Soc. Pac., San Francisco, p. 3en_US
dc.identifier.citedreferenceLaszlo I., Bean R., Kirk D., Bridle S., 2011, preprint (arXiv:1109.4535)en_US
dc.identifier.citedreferenceLe Fèvre O. et al., 2005, A&A, 439, 845en_US
dc.identifier.citedreferenceLima M., Cunha C. E., Oyaizu H., Frieman J., Lin H., Sheldon E. S., 2008, MNRAS, 390, 118en_US
dc.identifier.citedreferenceMa Z., Bernstein G., 2008, ApJ, 682, 39en_US
dc.identifier.citedreferenceMa Z., Hu W., Huterer D., 2006, ApJ, 636, 21en_US
dc.identifier.citedreferenceMunshi D., Valageas P., Van Waerbeke L., Heavens A., 2008, Phys. Rep., 462, 67en_US
dc.identifier.citedreferenceNakajima R., Mandelbaum R., Seljak U., Cohn J. D., Reyes R., Cool R., 2012, MNRAS, 420, 3240en_US
dc.identifier.citedreferenceNewman J. A., 2008, ApJ, 684, 88en_US
dc.identifier.citedreferenceOyaizu H., Lima M., Cunha C. E., Lin H., Frieman J., Sheldon E. S., 2008a, ApJ, 674, 768en_US
dc.identifier.citedreferenceOyaizu H., Lima M., Cunha C. E., Lin H., Frieman J., 2008b, ApJ, 689, 709en_US
dc.identifier.citedreferenceSheldon E. S., Cunha C., Mandelbaum R., Brinkmann J., Weaver B. A., 2011, preprint (arXiv:1109.5192)en_US
dc.identifier.citedreferenceSun L., Zu‐Hui F., Charling T., Jean‐Paul K., Stéphanie J., André T., 2009, ApJ, 699, 958en_US
dc.identifier.citedreferencevan Waerbeke L., White M., Hoekstra H., Heymans C., 2006, Astropart. Phys., 26, 91en_US
dc.identifier.citedreferenceWadadekar Y., 2005, PASP, 117, 79en_US
dc.identifier.citedreferenceWang D., Zhang Y. X., Liu C., Zhao Y. H., 2007, MNRAS, 382, 1601en_US
dc.identifier.citedreferenceWetzel A. R., White M., 2010, MNRAS, 403, 1072en_US
dc.identifier.citedreferenceAbdalla F. B., Amara A., Capak P., Cypriano E. S., Lahav O., Rhodes J., 2008, MNRAS, 387, 969en_US
dc.identifier.citedreferenceAbdalla F. B., Banerji M., Lahav O., Rashkov V., 2011, MNRAS, 417, 1891en_US
dc.identifier.citedreferenceAbrahamse A., Knox L., Schmidt S., Thorman P., Tyson J. A., Zhan H., 2011, ApJ, 734, 36en_US
dc.identifier.citedreferenceAmara A., Refregier A., 2007, MNRAS, 381, 1018en_US
dc.identifier.citedreferenceArnouts S., Cristiani S., Moscardini L., Matarrese S., Lucchin F., Fontana A., Giallongo E., 1999, MNRAS, 310, 540en_US
dc.identifier.citedreferenceBartelmann M., Schneider P., 2001, Phys. Rep., 340, 291en_US
dc.identifier.citedreferenceBehroozi P. S., Conroy C., Wechsler R. H., 2010, ApJ, 717, 379en_US
dc.identifier.citedreferenceBenitez N., 2000, ApJ, 536, 571en_US
dc.identifier.citedreferenceBernstein G., Huterer D., 2010, MNRAS, 401, 1399 (BH10)en_US
dc.identifier.citedreferenceBlanton M. R., Roweis S., 2007, AJ, 133, 734en_US
dc.identifier.citedreferenceBlanton M. R. et al., 2003, ApJ, 592, 819en_US
dc.identifier.citedreferenceBolzonella M., Miralles J.‐M., Pelló R., 2000, A&A, 363, 476en_US
dc.identifier.citedreferenceBordoloi R., Lilly S. J., Amara A., 2010, MNRAS, 406, 881en_US
dc.identifier.citedreferenceBudavári T., Szalay A. S., Connolly A. J., Csabai I., Dickinson M., 2000, AJ, 120, 1588en_US
dc.identifier.citedreferenceBusha M. T., Wechsler R. H., Behroozi P. S., Gerke B. F., Klypin A. A., Primack J. R., 2011, ApJ, 743, 117en_US
dc.identifier.citedreferenceCoe D., Benítez N., Sánchez S. F., Jee M., Bouwens R., Ford H., 2006, AJ, 132, 926en_US
dc.identifier.citedreferenceColeman G. D., Wu C. C., Weedman D. W., 1980, ApJS, 43, 393en_US
dc.identifier.citedreferenceConnolly A. J., Csabai I., Szalay A. S., Koo D. C., Kron R. G., Munn J. A., 1995, AJ, 110, 2655en_US
dc.identifier.citedreferenceConroy C., Wechsler R. H., Kravtsov A. V., 2006, ApJ, 647, 201en_US
dc.identifier.citedreferenceCooper M. C., Tremonti C. A., Newman J. A., Zabludoff A. I., 2008, MNRAS, 390, 245en_US
dc.identifier.citedreferenceCsabai I. et al., 2003, AJ, 125, 580en_US
dc.identifier.citedreferenceCunha C. E., Lima M., Oyaizu H., Frieman J., Lin H., 2009, MNRAS, 396, 2379en_US
dc.identifier.citedreferenceFeldmann R. et al., 2006, MNRAS, 372, 565en_US
dc.identifier.citedreferenceFirth A. E., Lahav O., Somerville R. S., 2003, MNRAS, 339, 1195en_US
dc.identifier.citedreferenceGerdes D. W., Sypniewski A. J., McKay T. A., Hao J., Weis M. R., Wechsler R. H., Busha M. T., 2010, ApJ, 715, 823en_US
dc.identifier.citedreferenceHearin A. P., Zentner A. R., Ma Z., Huterer D., 2010, ApJ, 720, 1351en_US
dc.identifier.citedreferenceHildebrandt H. et al., 2010, A&A, 523, A31en_US
dc.identifier.citedreferenceHoekstra H., Jain B., 2008, Annu. Rev. Nuclear Part. Sci., 58, 99en_US
dc.identifier.citedreferenceHogg D. W. et al., 1998, AJ, 115, 1418en_US
dc.identifier.citedreferenceHu W., 1999, ApJ, 522, L21en_US
dc.identifier.citedreferenceHu W., 2002, Phys. Rev. D, 66, 083515en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.