Show simple item record

Biomechanical stimulation of osteoblast gene expression requires phosphorylation of the RUNX2 transcription factor

dc.contributor.authorLi, Yanen_US
dc.contributor.authorGe, Chunxien_US
dc.contributor.authorLong, Jason Pen_US
dc.contributor.authorBegun, Dana Len_US
dc.contributor.authorRodriguez, Jose Aen_US
dc.contributor.authorGoldstein, Steven Aen_US
dc.contributor.authorFranceschi, Renny Ten_US
dc.date.accessioned2012-06-15T14:33:37Z
dc.date.available2013-08-01T14:04:39Zen_US
dc.date.issued2012-06en_US
dc.identifier.citationLi, Yan; Ge, Chunxi; Long, Jason P; Begun, Dana L; Rodriguez, Jose A; Goldstein, Steven A; Franceschi, Renny T (2012). "Biomechanical stimulation of osteoblast gene expression requires phosphorylation of the RUNX2 transcription factor." Journal of Bone and Mineral Research 27(6): 1263-1274. <http://hdl.handle.net/2027.42/91365>en_US
dc.identifier.issn0884-0431en_US
dc.identifier.issn1523-4681en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91365
dc.description.abstractBone can adapt its structure in response to mechanical stimuli. At the cellular level, this involves changes in chromatin organization, gene expression, and differentiation, but the underlying mechanisms are poorly understood. Here we report on the involvement of RUNX2, a bone‐related transcription factor, in this process. Fluid flow shear stress loading of preosteoblasts stimulated translocation of extracellular signal‐regulated kinase (ERK)/mitogen‐activated protein kinase (MAPK) to the nucleus where it phosphorylated RUNX2 on the chromatin of target genes, and increased histone acetylation and gene expression. MAPK signaling and two RUNX2 phosphoacceptor sites, S301 and S319, were critical for this response. Similarly, in vivo loading of mouse ulnae dramatically increased ERK and RUNX2 phosphorylation as well as expression of osteoblast‐related genes. These findings establish ERK/MAPK‐mediated phosphorylation of RUNX2 as a critical step in the response of preosteoblasts to dynamic loading and define a novel mechanism to explain how mechanical signals induce gene expression in bone. © 2012 American Society for Bone and Mineral Research.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherBONEen_US
dc.subject.otherRUNX2en_US
dc.subject.otherMAP KINASEen_US
dc.subject.otherMECHANOTRANSDUCTIONen_US
dc.titleBiomechanical stimulation of osteoblast gene expression requires phosphorylation of the RUNX2 transcription factoren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialitiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDept of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, MI 48109‐1078, USA.en_US
dc.contributor.affiliationumOrthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USAen_US
dc.identifier.pmid22337141en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91365/1/1574_ftp.pdf
dc.identifier.doi10.1002/jbmr.1574en_US
dc.identifier.sourceJournal of Bone and Mineral Researchen_US
dc.identifier.citedreferenceZippo A, Serafini R, Rocchigiani M, Pennacchini S, Krepelova A, Oliviero S. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell. 2009; 138 ( 6 ): 1122 – 36.en_US
dc.identifier.citedreferencePratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL, Stein GS. Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev. 2006; 25 ( 4 ): 589 – 600.en_US
dc.identifier.citedreferenceFranceschi R, Ge C, Xiao G, Roca H, Jiang D. Transcriptional regulation of osteoblasts. Ann N Y Acad Sci. 2007; 1116: 196 – 207.en_US
dc.identifier.citedreferenceXiao G, Jiang D, Thomas P, Benson MD, Guan K, Karsenty G, Franceschi RT. MAPK pathways activate and phosphorylate the osteoblast‐specific transcription factor, Cbfa1. J Biol Chem. 2000; 275 ( 6 ): 4453 – 9.en_US
dc.identifier.citedreferenceGe C, Xiao G, Jiang D, Yang Q, Hatch NE, Roca H, Franceschi RT. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem. 2009; 284 ( 47 ): 32533 – 43.en_US
dc.identifier.citedreferenceGreenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JM, Arthur S, Xie M, Schneider MD, Zhai B, Gygi S, Davis R, Glimcher LH. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest. 2010; 120 ( 7 ): 2457 – 73.en_US
dc.identifier.citedreferenceSalingcarnboriboon R, Tsuji K, Komori T, Nakashima K, Ezura Y, Noda M. Runx2 is a target of mechanical unloading to alter osteoblastic activity and bone formation in vivo. Endocrinology. 2006; 147 ( 5 ): 2296 – 305.en_US
dc.identifier.citedreferenceGe C, Yang Q, Zhao G, Yu H, Kirkwood K, Franceschi RT. Interactions between extracellular signal‐regulated kinase 1/2 and p38 MAP kinase pathways in the control of Runx2 phosphorylation and transcriptional activity. J Bone Miner. Res. Epub 2011 Nov 9. DOI: 10.1002/jbmr.561.en_US
dc.identifier.citedreferenceXiao G, Cui Y, Ducy P, Karsenty G, Franceschi RT. Ascorbic acid‐dependent activation of the osteocalcin promoter in MC3T3‐E1 preosteoblasts: requirement for collagen matrix synthesis and the presence of an intact OSE2 sequence. Mol Endocrinol. 1997; 11 ( 8 ): 1103 – 13.en_US
dc.identifier.citedreferenceKapur S, Baylink DJ, Lau KH. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone. 2003; 32 ( 3 ): 241 – 51.en_US
dc.identifier.citedreferenceLi Y, Ge C, Franceschi R. Differentiation‐dependent association of phosphorylated extracellular signal‐regulated kinase with the chromatin of osteoblast‐related genes. J Bone Miner Res. 2010; 25 ( 1 ): 154 – 68.en_US
dc.identifier.citedreferenceRoca H, Franceschi RT. Analysis of transcription factor interactions in osteoblasts using competitive chromatin immunoprecipitation. Nucleic Acids Res. 2008; 36 ( 5 ): 1723 – 30.en_US
dc.identifier.citedreferenceLee KC, Maxwell A, Lanyon LE. Validation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading. Bone. 2002; 31 ( 3 ): 407 – 12.en_US
dc.identifier.citedreferenceGrewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression. Science. 2003; 301 ( 5634 ): 798 – 802.en_US
dc.identifier.citedreferenceBode AM, Dong Z. Inducible covalent posttranslational modification of histone H3. Sci STKE. 2005; 2005 ( 281 ): re4.en_US
dc.identifier.citedreferenceNowak SJ, Corces VG. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 2004; 20 ( 4 ): 214 – 20.en_US
dc.identifier.citedreferenceWang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet. 2008; 40 ( 7 ): 897 – 903.en_US
dc.identifier.citedreferenceYang S, Wei D, Wang D, Phimphilai M, Krebsbach PH, Franceschi RT. In vitro and in vivo synergistic interactions between the Runx2/Cbfa1 transcription factor and bone morphogenetic protein‐2 in stimulating osteoblast differentiation. J Bone Miner Res. 2003; 18 ( 4 ): 705 – 15.en_US
dc.identifier.citedreferenceRobling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol. 2001; 204 ( Pt 19 ): 3389 – 99.en_US
dc.identifier.citedreferenceForwood MR, Turner CH. The response of rat tibiae to incremental bouts of mechanical loading: a quantum concept for bone formation. Bone. 1994; 15 ( 6 ): 603 – 9.en_US
dc.identifier.citedreferenceBraddock M, Schwachtgen JL, Houston P, Dickson MC, Lee MJ, Campbell CJ. Fluid shear stress modulation of gene expression in endothelial cells. News Physiol Sci. 1998; 13: 241 – 6.en_US
dc.identifier.citedreferenceSerra C, Palacios D, Mozzetta C, Forcales SV, Morantte I, Ripani M, Jones DR, Du K, Jhala US, Simone C, Puri PL. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Mol Cell. 2007; 28 ( 2 ): 200 – 13.en_US
dc.identifier.citedreferenceSimone C, Forcales SV, Hill DA, Imbalzano AN, Latella L, Puri PL. p38 pathway targets SWI‐SNF chromatin‐remodeling complex to muscle‐specific loci. Nat Genet. 2004; 36 ( 7 ): 738 – 43.en_US
dc.identifier.citedreferenceLawrence MC, McGlynn K, Shao C, Duan L, Naziruddin B, Levy MF, Cobb MH. Chromatin‐bound mitogen‐activated protein kinases transmit dynamic signals in transcription complexes in beta‐cells. Proc Natl Acad Sci U S A. 2008; 105 ( 36 ): 13315 – 20.en_US
dc.identifier.citedreferencePokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA. Activated signal transduction kinases frequently occupy target genes. Science. 2006; 313 ( 5786 ): 533 – 6.en_US
dc.identifier.citedreferenceLuu YK, Capilla E, Rosen CJ, Gilsanz V, Pessin JE, Judex S, Rubin CT. Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary‐induced obesity. J Bone Miner Res. 2009; 24 ( 1 ): 50 – 61.en_US
dc.identifier.citedreferenceSen B, Xie Z, Case N, Ma M, Rubin C, Rubin J. Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta‐catenin signal. Endocrinology. 2008; 149 ( 12 ): 6065 – 75.en_US
dc.identifier.citedreferenceAdams M, Reginato MJ, Shao D, Lazar MA, Chatterjee VK. Transcriptional activation by peroxisome proliferator‐activated receptor gamma is inhibited by phosphorylation at a consensus mitogen‐activated protein kinase site. J Biol Chem. 1997; 272 ( 8 ): 5128 – 32.en_US
dc.identifier.citedreferenceGleeson PB, Protas EJ, LeBlanc AD, Schneider VS, Evans HJ. Effects of weight lifting on bone mineral density in premenopausal women. J Bone Miner Res. 1990; 5 ( 2 ): 153 – 8.en_US
dc.identifier.citedreferenceKrahl H, Michaelis U, Pieper HG, Quack G, Montag M. Stimulation of bone growth through sports. A radiologic investigation of the upper extremities in professional tennis players. Am J Sports Med. 1994; 22 ( 6 ): 751 – 7.en_US
dc.identifier.citedreferenceLeblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res. 1990; 5 ( 8 ): 843 – 50.en_US
dc.identifier.citedreferenceKeyak JH, Koyama AK, LeBlanc A, Lu Y, Lang TF. Reduction in proximal femoral strength due to long‐duration spaceflight. Bone. 2009; 44 ( 3 ): 449 – 53.en_US
dc.identifier.citedreferenceRobling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Ann Rev Biomed Eng. 2006; 8: 455 – 98.en_US
dc.identifier.citedreferenceRubin J, Rubin C, Jacobs CR. Molecular pathways mediating mechanical signaling in bone. Gene. 2006; 367: 1 – 16.en_US
dc.identifier.citedreferencePavalko FM, Chen NX, Turner CH, Burr DB, Atkinson S, Hsieh YF, Qiu J, Duncan RL. Fluid shear‐induced mechanical signaling in MC3T3‐E1 osteoblasts requires cytoskeleton‐integrin interactions. Am J Physiol. 1998; 275 ( 6 Pt 1 ): C1591 – 601.en_US
dc.identifier.citedreferenceNorvell SM, Alvarez M, Bidwell JP, Pavalko FM. Fluid shear stress induces beta‐catenin signaling in osteoblasts. Calcif Tissue Int. 2004; 75 ( 5 ): 396 – 404.en_US
dc.identifier.citedreferenceYoung SR, Gerard‐O'Riley R, Kim JB, Pavalko FM. Focal adhesion kinase is important for fluid shear stress‐induced mechanotransduction in osteoblasts. J Bone Miner Res. 2009; 24 ( 3 ): 411 – 24.en_US
dc.identifier.citedreferenceBoutahar N, Guignandon A, Vico L, Lafage‐Proust MH. Mechanical strain on osteoblasts activates autophosphorylation of focal adhesion kinase and proline‐rich tyrosine kinase 2 tyrosine sites involved in ERK activation. J Biol Chem. 2004; 279 ( 29 ): 30588 – 99.en_US
dc.identifier.citedreferenceSen B, Styner M, Xie Z, Case N, Rubin CT, Rubin J. Mechanical loading regulates NFATc1 and beta‐catenin signaling through a GSK3beta control node. J Biol Chem. 2009; 284 ( 50 ): 34607 – 17.en_US
dc.identifier.citedreferenceLeucht P, Kim JB, Currey JA, Brunski J, Helms JA. FAK‐Mediated mechanotransduction in skeletal regeneration. PLoS One. 2007; 2 ( 4 ): e390.en_US
dc.identifier.citedreferenceLi YJ, Batra NN, You L, Meier SC, Coe IA, Yellowley CE, Jacobs CR. Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. J Orthop Res. 2004; 22 ( 6 ): 1283 – 9.en_US
dc.identifier.citedreferenceLiu L, Shao L, Li B, Zong C, Li J, Zheng Q, Toong X, Gao C, Wang J. Extracellular signal‐regulated kinase1/2 activated by fluid shear stress promotes osteogenic differentiation of human bone marrow‐derived mesenchymal stem cells through novel signaling pathways. Int J Biochem Cell Biol. 2011; 43: 1591 – 601.en_US
dc.identifier.citedreferenceKarsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002; 2 ( 4 ): 389 – 406.en_US
dc.identifier.citedreferenceDucy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997; 89 ( 5 ): 747 – 54.en_US
dc.identifier.citedreferenceRoca H, Phimphilai M, Gopalakrishnan R, Xiao G, Franceschi RT. Cooperative interactions between RUNX2 and homeodomain protein‐binding sites are critical for the osteoblast‐specific expression of the bone sialoprotein gene. J Biol Chem. 2005; 280 ( 35 ): 30845 – 55.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.