Show simple item record

An Exploration of Tropical Cyclone Simulations in NCAR's Community Atmosphere Model.

dc.contributor.authorReed, Kevin A.en_US
dc.date.accessioned2012-06-15T17:30:46Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2012-06-15T17:30:46Z
dc.date.issued2012en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91502
dc.description.abstractUsing General Circulation Models (GCMs) for tropical cyclone studies is challenging due to the relatively small size of the storms, the intense convection and a host of scale interactions. However, with the advancement of computer architectures, GCMs are becoming capable of running at high horizontal resolutions with grid spacings of less than 60 km. As a result, high-resolution GCMs are becoming a tool of choice to evaluate tropical cyclones in current and future climate conditions. This raises questions concerning the fidelity of GCMs for tropical cyclone assessments. The physical and dynamical components of GCMs need to be evaluated to assess their reliability for tropical cyclone studies. An idealized tropical cyclone test case for high-resolution GCMs is developed and implemented in aqua-planet mode with constant sea surface temperatures. The initial conditions are based on an analytic initial vortex seed that is in gradient-wind and hydrostatic balance and intensifies over a 10-day period. The influence of the model parameterization package on the development of the tropical cyclone is assessed. In particular, different physics parameterization suites are investigated within the National Center for Atmospheric Research's Community Atmosphere Model CAM, including physics versions 3.1, 4 and 5. The choice of the CAM physics suite has a significant impact on the evolution of the idealized vortex into a tropical cyclone. In addition, a test case of intermediate complexity is introduced. Therein it is suggested that a GCM dynamical core be paired with simple moist physics to test the evolution of the test vortex. This simple-physics configuration includes important driving mechanisms for tropical cyclones, including surface fluxes, boundary layer diffusion and large-scale condensation. The impact of the CAM dynamical core (the resolved fluid flow component) on the tropical cyclone intensity and size is evaluated. In particular, the finite-volume, spectral element, Eulerian spectral transform and semi-Lagrangian spectral transform dynamical cores are utilized. The simple-physics simulations capture the dominant characteristics of tropical cyclones and are compared to the CAM 5 full physics results for each dynamical core. The research isolates the impact of the physical parameterizations, numerical schemes and uncertainties on the evolution of the cyclone in CAM.en_US
dc.language.isoen_USen_US
dc.subjectTropical Cyclonesen_US
dc.subjectGeneral Circulation Model (GCM)en_US
dc.subjectModel Evaluationen_US
dc.titleAn Exploration of Tropical Cyclone Simulations in NCAR's Community Atmosphere Model.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineAtmospheric and Space Sciencesen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberJablonowski, Christianeen_US
dc.contributor.committeememberFlanner, Mark G.en_US
dc.contributor.committeememberPoulsen, Christopher Jamesen_US
dc.contributor.committeememberWehner, Michael F.en_US
dc.subject.hlbsecondlevelAtmospheric, Oceanic and Space Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91502/1/kareed_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.