Show simple item record

Molecular Recognition of Substrates by Protein Farnesyltransferase and Geranylgeranyltransferase-I.

dc.contributor.authorLamphear, Corissa L.en_US
dc.date.accessioned2012-06-15T17:30:52Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2012-06-15T17:30:52Z
dc.date.issued2012en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91519
dc.description.abstractPrenylation is an important post-translational modification that targets proteins to the cellular membrane. Farnesyltransferase (FTase) catalyzes the attachment of the 15-carbon farnesyl moiety from farnesyldiphosphate to a cysteine near the C-terminus of a protein, while geranylgeranyltransferase-I (GGTase-I) catalyzes the analogous attachment of the 20-carbon geranylgeranyl group from geranylgeranyldiphosphate. Substrates of the prenyltransferases are involved in a myriad of signaling pathways and processes within the cell, therefore inhibitors targeting FTase and GGTase-I are being developed as therapeutics for treatment of diseases such as cancer, parasitic infection, and progeria. FTase and GGTase-I were proposed to recognize a Ca1a2X motif, where C is the cysteine where the prenyl group is attached, a1 and a2 are aliphatic amino acids, and X confers specificity between FTase and GGTase-I with X being methionine, serine, glutamine, and alanine for FTase and leucine or phenylalanine for GGTase-I. Recent work indicates that the Ca1a2X paradigm should be expanded; therefore, further studies are needed to define the prenylated proteome, to understand normal cellular processes, and to determine the targets of prenyltransferase inhibitors. In this study, we probed the molecular recognition of GGTase-I by testing a 400 peptide library for activity with GGTase-I. The enzyme modifies two classes of substrates: multiple turnover substrates (MTO) and single turnover-only (STO) which undergo chemistry but not product release. Statistical analysis was used to determine that MTO substrates typically follow the Ca1a2X definition, but the STO sequences are more diverse, further indicating GGTase-I recognizes a broader range of substrates. Additionally, with collaborators at the Hebrew University of Jerusalem, a computational program that predicts FTase substrates was developed, FlexPepBind. This novel method successfully predicted new peptide substrates with FTase and identified a new class of substrates containing a positively charged X residue. Lastly, to examine prenylation in vivo, we created a library of GFP-Ca1a2X fusion proteins and measured protein localization using fluorescence microscopy. The identity of the C-terminal sequence caused the proteins to localize to different cellular compartments presumably due to modification status. Together, these studies provide insight into the in vivo specificity of prenyltransferases and the involvement of prenylation in various cellular processes.en_US
dc.language.isoen_USen_US
dc.subjectPrenylationen_US
dc.subjectProtein Farnesyltransferaseen_US
dc.subjectProtein Geranylgeranyltransferaseen_US
dc.subjectSubstrate Specificityen_US
dc.titleMolecular Recognition of Substrates by Protein Farnesyltransferase and Geranylgeranyltransferase-I.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineBiological Chemistryen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberFierke, Carol A.en_US
dc.contributor.committeememberFuller, Robert S.en_US
dc.contributor.committeememberO'Brien, Patricken_US
dc.contributor.committeememberRamamoorthy, Ayyalusamyen_US
dc.contributor.committeememberVojtek, Anne B.en_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91519/1/lamphear_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.