Show simple item record

Next‐generation genetic testing for retinitis pigmentosa

dc.contributor.authorSikkema‐raddatz, Birgiten_US
dc.contributor.authorSijmons, Rolf H.en_US
dc.date.accessioned2012-07-12T17:23:09Z
dc.date.available2013-08-01T14:04:39Zen_US
dc.date.issued2012-06en_US
dc.identifier.citationSikkema‐raddatz, Birgit ; Sijmons, Rolf H. (2012). "Nextâ generation genetic testing for retinitis pigmentosa ." Human Mutation 33(6): 963-972. <http://hdl.handle.net/2027.42/92029>en_US
dc.identifier.issn1059-7794en_US
dc.identifier.issn1098-1004en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92029
dc.description.abstractMolecular diagnostics for patients with retinitis pigmentosa (RP) has been hampered by extreme genetic and clinical heterogeneity, with 52 causative genes known to date. Here, we developed a comprehensive next‐generation sequencing (NGS) approach for the clinical molecular diagnostics of RP. All known inherited retinal disease genes ( n = 111) were captured and simultaneously analyzed using NGS in 100 RP patients without a molecular diagnosis. A systematic data analysis pipeline was developed and validated to prioritize and predict the pathogenicity of all genetic variants identified in each patient, which enabled us to reduce the number of potential pathogenic variants from approximately 1,200 to zero to nine per patient. Subsequent segregation analysis and in silico predictions of pathogenicity resulted in a molecular diagnosis in 36 RP patients, comprising 27 recessive, six dominant, and three X‐linked cases. Intriguingly, De novo mutations were present in at least three out of 28 isolated cases with causative mutations. This study demonstrates the enormous potential and clinical utility of NGS in molecular diagnosis of genetically heterogeneous diseases such as RP. De novo dominant mutations appear to play a significant role in patients with isolated RP, having major implications for genetic counselling. Hum Mutat 33:963–972, 2012. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherClinical Molecular Diagnosticsen_US
dc.subject.otherBlindnessen_US
dc.subject.otherRetinitis Pigmentosaen_US
dc.subject.otherDNA Diagnosticsen_US
dc.subject.otherNGSen_US
dc.titleNext‐generation genetic testing for retinitis pigmentosaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDepartment of Human Genetics, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.en_US
dc.contributor.affiliationotherAugen Zentrum Siegburg, Siegburg, Germanyen_US
dc.contributor.affiliationotherRotterdam Eye Hospital, Rotterdam, The Netherlandsen_US
dc.contributor.affiliationotherInstitute for Genetic and Metabolic Disease, Nijmegen, The Netherlandsen_US
dc.contributor.affiliationotherNijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlandsen_US
dc.contributor.affiliationotherDepartment of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlandsen_US
dc.contributor.affiliationotherDepartment of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlandsen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92029/1/22045_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92029/2/humu_22045_sm_SuppInfo.pdf
dc.identifier.doi10.1002/humu.22045en_US
dc.identifier.sourceHuman Mutationen_US
dc.identifier.citedreferenceNg PC, Henikoff S. 2003. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31: 3812 – 3814.en_US
dc.identifier.citedreferenceKlevering BJ, Yzer S, Rohrschneider K, Zonneveld M, Allikmets R, van den Born LI, Maugeri A, Hoyng CB, Cremers FPM. 2004. Microarray‐based mutation analysis of the ABCA4 ( ABCR ) gene in autosomal recessive cone–rod dystrophy and retinitis pigmentosa. Eur J Hum Genet 12: 1024 – 1032.en_US
dc.identifier.citedreferenceLi B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, Mooney SD, Radivojac P. 2009. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25: 2744 – 2750.en_US
dc.identifier.citedreferenceLittink KW, Pott JWR, Collin RWJ, Kroes HY, Verheij JBGM, Blokland EAW, de Castro Miró M, Hoyng CB, Klaver CCW, Koenekoop RK, Rohrschneider K, Cremers FPM, van den Born LI, den Hollander AI. 2010. A novel nonsense mutation in CEP290 induces exon skipping and leads to a relatively mild retinal phenotype. Invest Ophthalmol Vis Sci 51: 3646 – 3652.en_US
dc.identifier.citedreferenceLorenz B, Poliakov E, Schambeck M, Friedburg C, Preising MN, Redmond TM. 2008. A comprehensive clinical and biochemical functional study of a novel RPE65 hypomorphic mutation. Invest Ophthalmol Vis Sci 49: 5235 – 5242.en_US
dc.identifier.citedreferenceLupski JR, Reid JG, Gonzaga‐Jauregui C, Rio Deiros D, Chen DCY, Nazareth L, Bainbridge M, Dinh H, Jing C, Wheeler DA, McGuire AL, Zhang F, Stankiewicz P, Halperin JJ, Yang C, Gehman C, Guo D, Irikat RK, Tom W, Fantin NJ, Muzny DM, Gibbs RA. 2010. Whole‐genome sequencing in a patient with Charcot–Marie–Tooth neuropathy. N Engl J Med 362: 1181 – 1191.en_US
dc.identifier.citedreferenceMaguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell'Osso L, Hertle R, Ma JX, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW, Auricchio A, High KA, Bennett J. 2008. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 358: 2240 – 2248.en_US
dc.identifier.citedreferenceMarmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M. 2009. ISCEV Standard for full‐field clinical electroretinography (2008 update). Doc Ophthalmol 118: 69 – 77.en_US
dc.identifier.citedreferenceMaugeri A, Klevering BJ, Rohrschneider K, Blankenagel A, Brunner HG, Deutman AF, Hoyng CB, Cremers FPM. 2000. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone–rod dystrophy. Am J Hum Genet 67: 960 – 966.en_US
dc.identifier.citedreferenceMcHenry CL, Liu Y, Feng W, Nair AR, Feathers KL, Ding X, Gal A, Vollrath D, Sieving PA, Thompson DA. 2004. MERTK arginine‐844‐cysteine in a patient with severe rod–cone dystrophy: loss of mutant protein function in transfected cells. Invest Ophthalmol Vis Sci 45: 1456 – 1463.en_US
dc.identifier.citedreferenceMiller SA, Dykes DD, Polesky HF. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16: 1215.en_US
dc.identifier.citedreferenceMokry M, Feitsma H, Nijman IJ, de Bruijn E, van der Zaag PJ, Guryev V, Cuppen E. 2010. Accurate SNP and mutation detection by targeted custom microarray‐based genomic enrichment of short‐fragment sequencing libraries. Nucleic Acids Res 38: e116.en_US
dc.identifier.citedreferenceMuradov KG, Artemyev NO. 2000. Loss of the effector function in a transducin‐alpha mutant associated with Nougaret night blindness. J Biol Chem 275: 6969 – 6974.en_US
dc.identifier.citedreferenceNajera C, Millan JM, Beneyto M, Prieto F. 1995. Epidemiology of retinitis pigmentosa in the Valencian community (Spain). Genet Epidemiol 12: 37 – 46.en_US
dc.identifier.citedreferenceNg SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ. 2010. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42: 30 – 35.en_US
dc.identifier.citedreferenceNishiguchi KM, Friedman JS, Sandberg MA, Swaroop A, Berson EL, Dryja TP. 2004. Recessive NRL mutations in patients with clumped pigmentary retinal degeneration and relative preservation of blue cone function. Proc Natl Acad Sci USA 101: 17819 – 17824.en_US
dc.identifier.citedreferenceOtto EA, Ramaswami G, Janssen S, Chaki M, Allen SJ, Zhou W, Airik R, Hurd TW, Ghosh AK, Wolf MT, Hoppe B, Neuhaus TJ, Bockenhauer D, Milford DV, Soliman NA, Antignac C, Saunier S, Johnson CA, Hildebrandt F; GPN Study Group. 2011. Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next generation sequencing strategy. J Med Genet 48: 105 – 116.en_US
dc.identifier.citedreferencePollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. 2010. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20: 110 – 121.en_US
dc.identifier.citedreferenceRoepman R, Letteboer SJF, Arts HH, van Beersum SEC, Lu X, Krieger E, Ferreira PA, Cremers FPM. 2005. Interaction of nephrocystin‐4 and RPGRIP1 is disrupted by nephronophthisis or Leber congenital amaurosis‐associated mutations. Proc Natl Acad Sci USA 102: 18520 – 18525.en_US
dc.identifier.citedreferenceShearer AE, DeLuca AP, Hildebrand MS, Taylor KR, Gurrola J II, Scherer S, Scheetz TE, Smith RJH. 2010. Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing. Proc Natl Acad Sci USA 107: 21104 – 21109.en_US
dc.identifier.citedreferenceSimpson DA, Clark GR, Alexander S, Silvestri G, Willoughby CE. 2011. Molecular diagnosis for heterogeneous genetic diseases with targeted high‐throughput DNA sequencing applied to retinitis pigmentosa. J Med Genet 48: 145 – 151.en_US
dc.identifier.citedreferenceSun H, Smallwood PM, Nathans J. 2000. Biochemical defects in ABCR protein variants associated with human retinopathies. Nat Genet 26: 242 – 246.en_US
dc.identifier.citedreferenceThompson DA, Janecke AR, Lange J, Feathers KL, Hübner CA, McHenry CL, Stockton DW, Rammesmayer G, Lupski JR, Antinolo G, Ayuso C, Baiget M, Gouras P, Heckenlively JR, den Hollander A, Jacobson SG, Lewis RA, Sieving PA, Wissinger B, Yzer S, Zrenner E, Utermann G, Gal A. 2005. Retinal degeneration associated with RDH12 mutations results from decreased 11‐cis retinal synthesis due to disruption of the visual cycle. Hum Mol Genet 14: 3865 – 3875.en_US
dc.identifier.citedreferenceVadlamudi L, Dibbens LM, Lawrence KM, Iona X, McMahon JM, Murrell W, Mackay‐Sim A, Scheffer IE, Berkovic SF. 2010. Timing of de novo mutagenesis—a twin study of sodium‐channel mutations. N Engl J Med 363: 1335 – 1340.en_US
dc.identifier.citedreferencevan den Born LI, Bergen AA, Bleeker‐Wagemakers EM. 1992. A retrospective study of registered retinitis pigmentosa patients in The Netherlands. Ophthalmic Paediatr Genet 13: 227 – 236.en_US
dc.identifier.citedreferenceVissers LELM, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P, van Lier B, Arts P, Wieskamp N, del Rosario M, van Bon BWM, Hoischen A, de Vries BBA, Brunner HG, Veltman JA. 2010. A de novo paradigm for mental retardation. Nat Genet 42: 1109 – 1112.en_US
dc.identifier.citedreferenceWilkie SE, Newbold RJ, Deery E, Walker CE, Stinton I, Ramamurthy V, Hurley JB, Bhattacharya SS, Warren MJ, Hunt DM. 2000. Functional characterization of missense mutations at codon 838 in retinal guanylate cyclase correlates with disease severity in patients with autosomal dominant cone–rod dystrophy. Hum Mol Genet 9: 3065 – 3073.en_US
dc.identifier.citedreferenceWorthey EA, Mayer AN, Syverson GD, Helbling D, Bonacci BB, Decker B, Serpe JM, Dasu T, Tschannen MR, Veith RL, Basehore MJ, Broeckel U, Tomita‐Mitchell A, Arca MJ, Casper JT, Margolis DA, Bick DP, Hessner MJ, Routes JM, Verbsky JW, Jacob HJ, Dimmock DP. 2011. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med 13: 255 – 262.en_US
dc.identifier.citedreferenceYzer S, van den Born LI, Schuil J, Kroes HY, van Genderen MM, Boonstra FN, van den Helm B, Brunner HG, Koenekoop RK, Cremers FPM. 2003. A Tyr368His RPE65 founder mutation is associated with variable expression and progression of early onset retinal dystrophy in 10 families of a genetically isolated population. J Med Genet 40: 709 – 713.en_US
dc.identifier.citedreferenceAdzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. 2010. A method and server for predicting damaging missense mutations. Nat Methods 7: 248 – 249.en_US
dc.identifier.citedreferenceÁvila‐Fernández A, Cantalapiedra D, Aller E, Vallespín E, Aguirre‐Lambán J, Blanco‐Kelly F, Corton M, Riveiro‐Álvarez R, Allikmets R, Trujillo‐Tiebas MJ, Millán JM, Cremers FPM, Ayuso C. 2010. Mutation analysis of 272 Spanish families affected by autosomal recessive retinitis pigmentosa using a genotyping microarray. Mol Vis 16: 2550 – 2558.en_US
dc.identifier.citedreferenceBainbridge JWB, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen‐Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR. 2008. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 358: 2231 – 2239.en_US
dc.identifier.citedreferenceBandah‐Rozenfeld D, Collin RWJ, Banin E, van den Born LI, Coene KLM, Siemiatkowska AM, Zelinger L, Khan MI, Lefeber DJ, Erdinest I, Testa F, Simonelli F, Voesenek K, Blokland EAW, Strom TM, Klaver CCW, Qamar R, Banfi S, Cremers FPM, Sharon D, den Hollander AI. 2010. Mutations in IMPG2, encoding interphotoreceptor matrix proteoglycan 2, cause autosomal‐recessive retinitis pigmentosa. Am J Hum Genet 87: 199 – 208.en_US
dc.identifier.citedreferenceBell J, Bodmer D, Sistermans E, Ramsden SC. 2007. Practice guidelines for the interpretation and reporting of unclassified variants (UVs) in clinical molecular genetics. Clin Mol Genet Soc.en_US
dc.identifier.citedreferenceBerger W, Kloeckener‐Gruissem B, Neidhardt J. 2010. The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 29: 335 – 375.en_US
dc.identifier.citedreferenceBoon CJF, van Schooneveld MJ, den Hollander AI, van Lith‐Verhoeven JJC, Zonneveld‐Vrieling MN, Theelen T, Cremers FPM, Hoyng CB, Klevering BJ. 2007. Mutations in the peripherin/RDS gene are an important cause of multifocal pattern dystrophy simulating STGD1/fundus flavimaculatus. Br J Ophthalmol 91: 1504 – 1511.en_US
dc.identifier.citedreferenceBowne SJ, Sullivan LS, Koboldt DC, Ding L, Fulton R, Abbott RM, Sodergren EJ, Birch DG, Wheaton DH, Heckenlively JR, Liu Q, Pierce EA, Weinstock GM, Daiger SP. 2011. Identification of disease‐causing mutations in autosomal dominant retinitis pigmentosa (adRP) using next‐generation DNA sequencing. Invest Ophthalmol Vis Sci 52: 494 – 503.en_US
dc.identifier.citedreferenceChen S, Wang QL, Xu S, Liu I, Li LY, Wang Y, Zack DJ. 2002. Functional analysis of cone‐rod homeobox (CRX) mutations associated with retinal dystrophy. Hum Mol Genet 11: 873 – 884.en_US
dc.identifier.citedreferenceChoi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, Nayir A, Bakkaloğlu A, Ozen S, Sanjad S, Nelson‐Williams C, Farhi A, Mane S, Lifton RP. 2009. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 106: 19096 – 19101.en_US
dc.identifier.citedreferenceCollin RWJ, Littink KW, Klevering BJ, van den Born LI, Koenekoop RK, Zonneveld MN, Blokland EAW, Strom TM, Hoyng CB, den Hollander AI, Cremers FPM. 2008. Identification of a 2 Mb human ortholog of Drosophila eyes shut/spacemaker that is mutated in patients with retinitis pigmentosa. Am J Hum Genet 83: 594 – 603.en_US
dc.identifier.citedreferenceCollin RWJ, Safieh C, Littink KW, Shalev SA, Garzozi HJ, Rizel L, Abbasi AH, Cremers FPM, den Hollander AI, Klevering BJ, Ben‐Yosef T. 2010. Mutations in C2ORF71 cause autosomal‐recessive retinitis pigmentosa. Am J Hum Genet 86: 783 – 788.en_US
dc.identifier.citedreferenceCollin RWJ, van den Born LI, Klevering BJ, de Castro‐Miró M, Littink KW, Arimadyo K, Azam M, Yazar V, Zonneveld MN, Paun CC, Siemiatkowska AM, Strom TM, Hehir‐Kwa JY, Kroes HY, de Faber JTHN, van Schooneveld MJ, Heckenlively JR, Hoyng CB, den Hollander AI, Cremers FPM. 2011. High‐resolution homozygosity mapping is a powerful tool to detect novel mutations causative for autosomal recessive RP in the Dutch population. Invest Ophthalmol Vis Sci 52: 2227 – 2239.en_US
dc.identifier.citedreferenceCremers FPM, van de Pol DJR, van Driel M, den Hollander AI, van Haren FJJ, Knoers NVAM, Tijmes N, Bergen AAB, Rohrschneider K, Blankenagel A, Pinckers AJLG, Deutman AF, Hoyng CB. 1998. Autosomal recessive retinitis pigmentosa and cone–rod dystrophy caused by splice site mutations in the Stargardt's disease gene ABCR. Hum Mol Genet 7: 355 – 362.en_US
dc.identifier.citedreferenceDaiger SP, Sullivan LS, Gire AI, Birch DG, Heckenlively JR, Bowne SJ. 2008. Mutations in known genes account for 58% of autosomal dominant retinitis pigmentosa (adRP). Adv Exp Med Biol 613: 203 – 209.en_US
dc.identifier.citedreferenceden Hollander AI, Black A, Bennett J, Cremers FPM. 2010. Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J Clin Invest 120: 3042 – 3053.en_US
dc.identifier.citedreferenceden Hollander AI, Heckenlively JR, van den Born LI, de Kok YJM, van der Velde‐Visser SD, Kellner U, Jurklies B, van Schooneveld MJ, Blankenagel A, Rohrschneider K, Wissinger B, Cruysberg JRM, Deutman AF, Brunner HG, Apfelstedt‐Sylla E, Hoyng CB, Cremers FPM. 2001. Leber congenital amaurosis and retinitis pigmentosa with Coats‐like exudative vasculopathy are associated with mutations in the crumbs homologue 1 (CRB1) gene. Am J Hum Genet 69: 198 – 203.en_US
dc.identifier.citedreferenceden Hollander AI, ten Brink JB, de Kok YJM, van Soest S, van den Born LI, van Driel MA, van de Pol DJR, Payne AM, Bhattacharya SS, Kellner U, Hoyng CB, Westerveld A, Brunner HG, Bleeker‐Wagemakers EM, Deutman AF, Heckenlively JR, Cremers FPM, Bergen AAB. 1999. Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nat Genet 23: 217 – 221.en_US
dc.identifier.citedreferenceDryja TP, Finn JT, Peng YW, McGee TL, Berson EL, Yau KW. 1995. Mutations in the gene encoding the alpha subunit of the rod cGMP‐gated channel in autosomal recessive retinitis pigmentosa. Proc Natl Acad Sci USA 92: 10177 – 10181.en_US
dc.identifier.citedreferenceHamdan FF, Gauthier J, Spiegelman D, Noreau A, Yang Y, Pellerin S, Dobrzeniecka S, Côté M, Perreau‐Linck E, Carmant L, D'Anjou G, Fombonne E, Addington AM, Rapoport JL, Delisi LE, Krebs MO, Mouaffak F, Joober R, Mottron L, Drapeau P, Marineau C, Lafrenière RG, Lacaille JC, Rouleau GA, Michaud JL; Synapse to Disease Group. 2009. Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. N Engl J Med 360: 599 – 605.en_US
dc.identifier.citedreferenceHartong DT, Berson EL, Dryja TP. 2006. Retinitis pigmentosa. Lancet 368: 1795 – 1809.en_US
dc.identifier.citedreferenceHayakawa M, Fujiki K, Kanai A, Matsumura M, Honda Y, Sakaue H, Tamai M, Sakuma T, Tokoro T, Yura T, Kubota N, Kawano S, Matsui M, Yuzawa M, Oguchi Y, Akeo K, Adachi E, Kimura T, Miyake Y, Horiguchi M, Wakabayashi K, Ishizaka N, Koizumi K, Uyama M, Ohba N. 1997. Multicenter genetic study of retinitis pigmentosa in Japan: I. Genetic heterogeneity in typical retinitis pigmentosa. Jpn J Ophthalmol 41: 1 – 6.en_US
dc.identifier.citedreferenceHauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, Conlon TJ, Boye SL, Flotte TR, Byrne BJ, Jacobson SG. 2008. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno‐associated virus gene vector: short‐term results of a phase I trial. Hum Gene Ther 19: 979 – 990.en_US
dc.identifier.citedreferenceHe X, Lobsiger J, Stocker A. 2009. Bothnia dystrophy is caused by domino‐like rearrangements in cellular retinaldehyde‐binding protein mutant R234W. Proc Natl Acad Sci USA 106: 18545 – 18550.en_US
dc.identifier.citedreferenceHoischen A, van Bon BWM, Gilissen C, Arts P, van Lier B, Steehouwer M, de Vries P, de Reuver R, Wieskamp N, Mortier G, Devriendt K, Amorim MZ, Revencu N, Kidd A, Barbosa M, Turner A, Smith J, Oley C, Henderson A, Hayes IM, Thompson EM, Brunner HG, de Vries BBA, Veltman JA. 2010. De novo mutations of SETBP1 cause Schinzel–Giedion syndrome. Nat Genet 42: 483 – 485.en_US
dc.identifier.citedreferenceIlling ME, Rajan RS, Bence NF, Kopito RR. 2002. A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J Biol Chem 277: 34150 – 34160.en_US
dc.identifier.citedreferenceJones MA, Bhide S, Chin E, Ng BG, Rhodenizer D, Zhang VW, Sun JJ, Tanner A, Freeze HH, Hegde MR. 2011. Targeted polymerase chain reaction‐based enrichment and next generation sequencing for diagnostic testing of congenital disorders of glycosylation. Genet Med 13: 921 – 932.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.