Show simple item record

Integrating mass spectrometry of intact protein complexes into structural proteomics

dc.contributor.authorHyung, Suk‐joonen_US
dc.contributor.authorRuotolo, Brandon T.en_US
dc.date.accessioned2012-07-12T17:24:12Z
dc.date.available2013-07-01T14:33:05Zen_US
dc.date.issued2012-05en_US
dc.identifier.citationHyung, Suk‐joon ; Ruotolo, Brandon T. (2012). "Integrating mass spectrometry of intact protein complexes into structural proteomics." PROTEOMICS 12(10): 1547-1564. <http://hdl.handle.net/2027.42/92070>en_US
dc.identifier.issn1615-9853en_US
dc.identifier.issn1615-9861en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92070
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherProtein‐Ligand Screeningen_US
dc.subject.otherStructural Genomicsen_US
dc.subject.otherSystems Biologyen_US
dc.subject.otherTechnologyen_US
dc.subject.otherHigh‐Throughputen_US
dc.subject.otherNoncovalent Complexesen_US
dc.titleIntegrating mass spectrometry of intact protein complexes into structural proteomicsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22611037en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92070/1/pmic7069.pdf
dc.identifier.doi10.1002/pmic.201100520en_US
dc.identifier.sourcePROTEOMICSen_US
dc.identifier.citedreferenceHu, P. F., Loo, J. A., Determining calcium‐binding stoichiometry and cooperativity of parvalbumin and calmodulin by mass‐spectrometry. J. Mass Spectrom. 1995, 30, 1076 – 1082.en_US
dc.identifier.citedreferenceJarrold, M. F., Drift tube studies of atomic clusters. J. Phys. Chem. 1995, 99, 11 – 21.en_US
dc.identifier.citedreferenceEiceman, G. A., Advances in ion mobility spectrometry: 1980–1990. Cr. Rev. Anal. Chem. 1991, 22, 471 – 490.en_US
dc.identifier.citedreferenceBaumbach, J. I., Eiceman, G. A., Ion mobility spectrometry: arriving on site and moving beyond a low profile. Appl. Spectrosc. 1999, 53, 338A – 355A.en_US
dc.identifier.citedreferencevon Helden, G., Wyttenbach, T., Bowers, M. T., Conformation of macromolecules in the gas phase: use of matrix‐assisted laser desorption methods in ion chromatography. Science 1995, 267, 1483 – 1485.en_US
dc.identifier.citedreferenceClemmer, D. E., Jarrold, M. F., Ion mobility measurements and their applications to clusters and biomolecules. J. Mass Spectrom. 1997, 32, 577 – 592.en_US
dc.identifier.citedreferenceValentine, S. J., Liu, X., Plasencia, M. D., Hilderbrand, A. E. et al., Developing liquid chromatography ion mobility mass spectometry techniques. Expert Rev. Proteomics 2005, 2, 553 – 565.en_US
dc.identifier.citedreferenceMcLean, J. A., Ruotolo, B. T., Gillig, K. J., Russell, D. H., Ion mobility–mass spectrometry: a new paradigm for proteomics. Int. J. Mass Spectrom. 2005, 240, 301 – 315.en_US
dc.identifier.citedreferenceTao, L., Dahl, D., Pérez, L., Russell, D., The contributions of molecular framework to IMS collision cross‐sections of gas‐phase peptide ions. J. Am. Soc. Mass Spectrom. 2009, 20, 1593 – 1602.en_US
dc.identifier.citedreferencePolitis, A., Park, A. Y., Hyung, S. J., Barsky, D. et al., Integrating ion mobility mass spectrometry with molecular modelling to determine the architecture of multiprotein complexes. PLoS One 2010, 5, e12080.en_US
dc.identifier.citedreferenceUetrecht, C., Barbu, I. M., Shoemaker, G. K., van Duijn, E. et al., Interrogating viral capsid assembly with ion mobility‐mass spectrometry. Nat. Chem. 2011, 3, 126 – 132.en_US
dc.identifier.citedreferenceBernstein, S. L., Dupuis, N. F., Lazo, N. D., Wyttenbach, T. et al., Amyloid‐beta protein oligomerization and the importance of tetramers and dodecamers in the aetiology of A lzheimer's disease. Nat. Chem. 2009, 1, 326 – 331.en_US
dc.identifier.citedreferenceDupuis, N. F., Wu, C., Shea, J. E., Bowers, M. T., The amyloid formation mechanism in human IAPP: dimers have beta‐strand monomer‐monomer interfaces. J. Am. Chem. Soc. 2011, 133, 7240 – 7243.en_US
dc.identifier.citedreferenceSmith, D. P., Radford, S. E., Ashcroft, A. E., Elongated oligomers in beta2‐microglobulin amyloid assembly revealed by ion mobility spectrometry‐mass spectrometry. Proc. Natl. Acad. Sci. USA 2010, 107, 6794 – 6798.en_US
dc.identifier.citedreferenceSmith, D. P., Woods, L. A., Radford, S. E., Ashcroft, A. E., Structure and dynamics of oligomeric intermediates in beta(2)‐microglobulin self‐assembly. Biophys J. 2011, 101, 1238 – 1247.en_US
dc.identifier.citedreferenceHernandez, H., Dziembowski, A., Taverner, T., Seraphin, B. et al., Subunit architecture of multimeric complexes isolated directly from cells. EMBO Rep. 2006, 7, 605 – 610.en_US
dc.identifier.citedreferenceLiu, Q., Greimann, J. C., Lima, C. D., Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 2006, 127, 1223 – 1237.en_US
dc.identifier.citedreferenceBreuker, K., McLafferty, F. W., Native electron capture dissociation for the structural characterization of noncovalent interactions in native cytochrome c. Angew Chem. Int. Edit. 2003, 42, 4900 – 4904.en_US
dc.identifier.citedreferenceBreuker, K., McLafferty, F. W., The thermal unfolding of native cytochrome c in the transition from solution to gas phase probed by native electron capture dissociation. Angew Chem. Int. Edit. 2005, 44, 4911 – 4914.en_US
dc.identifier.citedreferencePolfer, N. C., Oomens, J., Vibrational spectroscopy of bare and solvated ionic complexes of biological relevance. Mass Spectrom. Rev. 2009, 28, 468 – 494.en_US
dc.identifier.citedreferenceOomens, J., Polfer, N., Moore, D. T., van der Meer, L. et al., Charge‐state resolved mid‐infrared spectroscopy of a gas‐phase protein. Phys. Chem. Chem. Phys. 2005, 7, 1345 – 1348.en_US
dc.identifier.citedreferenceBian, Q. Z., Forbes, M. W., Talbot, F. O., Jockusch, R. A., Gas‐phase fluorescence excitation and emission spectroscopy of mass‐selected trapped molecular ions. Phys. Chem. Chem. Phys. 2010, 12, 2590 – 2598.en_US
dc.identifier.citedreferenceBenesch, J. L. P., Ruotolo, B. T., Simmons, D. A., Barrera, N. P. et al., Separating and visualisiing protein assemblies by means of preparative mass spectrometry and microscopy. J. Struct. Biol. 2010, 172, 161 – 168.en_US
dc.identifier.citedreferenceKim, J., Kim, K. H., Lee, J. H., Ihee, H., Ultrafast X ‐ray diffraction in liquid, solution and gas: present status and future prospects. Acta. Crystallogr. A 2010, 66, 270 – 280.en_US
dc.identifier.citedreferenceAquilina, J. A., The major toxin from the A ustralian Common Brown Snake is a hexamer with unusual gas‐phase dissociation properties. Proteins 2009, 75, 478 – 485.en_US
dc.identifier.citedreferenceZhang, H., Cui, W. D., Wen, J. Z., Blankenship, R. E. et al., Native electrospray and electron‐capture dissociation in FTICR mass spectrometry provide top‐down sequencing of a protein component in an intact protein assembly. J. Am. Soc. Mass Spectrom. 2010, 21, 1966 – 1968.en_US
dc.identifier.citedreferenceBoeri Erba, E., Ruotolo, B. T., Barsky, D., Robinson, C. V., Ion mobility‐mass spectrometry reveals the influence of subunit packing and charge on the dissociation of multiprotein complexes. Anal. Chem. 2010, 82, 9702 – 9710.en_US
dc.identifier.citedreferenceKuhner, S., van Noort, V., Betts, M. J., Leo‐Macias, A. et al., Proteome organization in a genome‐reduced bacterium. Science 2009, 326, 1235 – 1240.en_US
dc.identifier.citedreferenceTarassov, K., Messier, V., Landry, C. R., Radinovic, S. et al., An in vivo map of the yeast protein interactome. Science 2008, 320, 1465 – 1470.en_US
dc.identifier.citedreferenceRix, U., Superti‐Furga, G., Target profiling of small molecules by chemical proteomics. Nat. Chem. Biol. 2009, 5, 616 – 624.en_US
dc.identifier.citedreferenceShi, W., Chance, M. R., Metalloproteomics: forward and reverse approaches in metalloprotein structural and functional characterization. Curr. Opin. Chem. Biol. 2011, 15, 144 – 148.en_US
dc.identifier.citedreferenceYoung, N. L., Plazas‐Mayorca, M. D., Garcia, B. A., Systems‐wide proteomic characterization of combinatorial post‐translational modification patterns. Expert Rev. Proteomics 2010, 7, 79 – 92.en_US
dc.identifier.citedreferenceYang, Z., Progress and challenges in protein structure prediction. Curr. Opin. Struct. Biol. 2008, 18, 342 – 348.en_US
dc.identifier.citedreferenceAlber, F., Dokudovskaya, S., Veenhoff, L. M., Zhang, W. et al., The molecular architecture of the nuclear pore complex. Nature 2007, 450, 695 – 701.en_US
dc.identifier.citedreferenceGingras, A. C., Gstaiger, M., Raught, B., Aebersold, R., Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell. Biol. 2007, 8, 645 – 654.en_US
dc.identifier.citedreferenceEnglander, S. W., Hydrogen exchange and mass spectrometry: a historical perspective. J. Am. Soc. Mass Spectrom. 2006, 17, 1481 – 1489.en_US
dc.identifier.citedreferenceEngen, J. R., Analysis of protein conformation and dynamics by hydrogen/deuterium exchange MS. Anal. Chem. 2009, 81, 7870 – 7875.en_US
dc.identifier.citedreferenceKaltashov, I. A., Bobst, C. E., Abzalimov, R. R., H / D exchange and mass spectrometry in the studies of protein conformation and dynamics: is there a need for a top‐down approach? Anal. Chem. 2009, 81, 7892 – 7899.en_US
dc.identifier.citedreferenceChalmers, M. J., Busby, S. A., Pascal, B. D., West, G. M. et al., Differential hydrogen/deuterium exchange mass spectrometry analysis of protein‐ligand interactions. Expert Rev. Proteomics 2011, 8, 43 – 59.en_US
dc.identifier.citedreferenceKonermann, L., Pan, J., Liu, Y. H., Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 2011, 40, 1224 – 1234.en_US
dc.identifier.citedreferenceJin Lee, Y., Mass spectrometric analysis of cross‐linking sites for the structure of proteins and protein complexes. Mol. Biosyst. 2008, 4, 816 – 823.en_US
dc.identifier.citedreferenceLeitner, A., Walzthoeni, T., Kahraman, A., Herzog, F. et al., Probing native protein structures by chemical cross‐linking, mass spectrometry, and bioinformatics. Mol. Cell. Proteomics 2010, 9, 1634 – 1649.en_US
dc.identifier.citedreferencePetrotchenko, E. V., Borchers, C. H., Crosslinking combined with mass spectrometry for structural proteomics. Mass Spectrom. Rev. 2010, 29, 862 – 876.en_US
dc.identifier.citedreferenceKonermann, L., Stocks, B. B., Pan, Y., Tong, X., Mass spectrometry combined with oxidative labeling for exploring protein structure and folding. Mass Spectrom. Rev. 2010, 29, 651 – 667.en_US
dc.identifier.citedreferenceKiselar, J. G., Chance, M. R., Future directions of structural mass spectrometry using hydroxyl radical footprinting. J. Mass Spectrom. 2010, 45, 1373 – 1382.en_US
dc.identifier.citedreferenceSimon, J. H., The structural aspects of limited proteolysis of native proteins. BBA‐Protein Struct. M. 1998, 1382, 191 – 206.en_US
dc.identifier.citedreferenceFontana, A., de Laureto, P. P., Spolaore, B., Frare, E. et al., Probing protein structure by limited proteolysis. Acta. Biochim. Pol. 2004, 51, 299 – 321.en_US
dc.identifier.citedreferenceYates, J. R., Ruse, C. I., Nakorchevsky, A., Proteomics by mass spectrometry: approaches, advances, and applications. Annu. Rev. Biomed. Eng. 2009, 11, 49 – 79.en_US
dc.identifier.citedreferenceUetrecht, C., Rose, R. J., van Duijn, E., Lorenzen, K. et al., Ion mobility mass spectrometry of proteins and protein assemblies. Chem. Soc. Rev. 2010, 39, 1633 – 1655.en_US
dc.identifier.citedreferenceKanu, A. B., Dwivedi, P., Tam, M., Matz, L. et al., Ion mobility–mass spectrometry. J. Mass Spectrom. 2008, 43, 1 – 22.en_US
dc.identifier.citedreferenceBohrer, B. C., Merenbloom, S. I., Koeniger, S. L., Hilderbrand, A. E. et al., Biomolecule analysis by ion mobility spectrometry. Annu. Rev. Anal. Chem. 2008, 1, 293 – 327.en_US
dc.identifier.citedreferenceChernushevich, I. V., Thomson, B. A., Collisional cooling of large ions in electrospray mass spectrometry. Anal. Chem. 2004, 76, 1754 – 1760.en_US
dc.identifier.citedreferenceSobott, F., Hernandez, H., McCammon, M. G., Tito, M. A. et al., A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal. Chem. 2002, 74, 1402 – 1407.en_US
dc.identifier.citedreferencevan den Heuvel, R. H., van Duijn, E., Mazon, H., Synowsky, S. A. et al., Improving the performance of a quadrupole time‐of‐flight instrument for macromolecular mass spectrometry. Anal. Chem. 2006, 78, 7473 – 7483.en_US
dc.identifier.citedreferenceBenesch, J. L., Ruotolo, B. T., Simmons, D. A., Robinson, C. V., Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem. Rev. 2007, 107, 3544 – 3567.en_US
dc.identifier.citedreferenceHeck, A. J. R., Native mass spectrometry: a bridge between interactomics and structural biology. Nat. Methods 2008, 5, 927 – 933.en_US
dc.identifier.citedreferenceZhou, M., Robinson, C. V., When proteomics meets structural biology. Trends Biochem. Sci. 2010, 35, 522 – 529.en_US
dc.identifier.citedreferenceKelleher, N. L., Top‐down proteomics. Anal. Chem. 2004, 76, 197A – 203A.en_US
dc.identifier.citedreferenceCui, W., Rohrs, H. W., Gross, M. L., Top‐down mass spectrometry: recent developments, applications and perspectives. Analyst 2011, 136, 3854 – 3864.en_US
dc.identifier.citedreferencePaizs, B., Suhai, S., Fragmentation pathways of protonated peptides. Mass Spectrom. Rev. 2005, 24, 508 – 548.en_US
dc.identifier.citedreferenceCooper, H. J., Hakansson, K., Marshall, A. G., The role of electron capture dissociation in biomolecular analysis. Mass Spectrom. Rev. 2005, 24, 201 – 222.en_US
dc.identifier.citedreferenceMann, M., Hendrickson, R. C., Pandey, A., Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 2001, 70, 437 – 473.en_US
dc.identifier.citedreferenceCounterman, A. E., Clemmer, D. E., Large anhydrous polyalanine ions: evidence for extended helices and onset of a more compact state. J. Am. Chem. Soc. 2001, 123, 1490 – 1498.en_US
dc.identifier.citedreferenceJarrold, M. F., Helices and sheets in vacuo. Phys. Chem. Chem. Phys. 2007, 9, 1659 – 1671.en_US
dc.identifier.citedreferenceRuotolo, B. T., Tate, C. C., Russell, D. H., Ion mobility‐mass spectrometry applied to cyclic peptide analysis: conformational preferences of gramicidin S and linear analogs in the gas phase. J. Am. Soc. Mass Spectrom. 2004, 15, 870 – 878.en_US
dc.identifier.citedreferenceRuotolo, B. T., Gillig, K. J., Woods, A. S., Egan, T. F. et al., Analysis of phosphorylated peptides by ion mobility‐mass spectrometry. Anal. Chem. 2004, 76, 6727 – 6733.en_US
dc.identifier.citedreferenceRuotolo, B. T., Verbeck, G. F., Thomson, L. M., Woods, A. S. et al., Distinguishing between phosphorylated and nonphosphorylated peptides with ion mobility‐mass spectrometry. J. Proteome Res. 2002, 1, 303 – 306.en_US
dc.identifier.citedreferenceMcLean, J. A., The mass‐mobility correlation redux: the conformational landscape of anhydrous biomolecules. J. Am. Soc. Mass Spectrom. 2009, 20, 1775 – 1781.en_US
dc.identifier.citedreferenceBaumketner, A., Bernstein, S. L., Wyttenbach, T., Bitan, G. et al., Amyloid beta‐protein monomer structure: a computational and experimental study. Protein Sci. 2006, 15, 420 – 428.en_US
dc.identifier.citedreferenceWyttenbach, T., Bowers, M. T., Intermolecular interactions in biomolecular systems examined by mass spectrometry. Annu. Rev. Phys. Chem. 2007, 58, 511 – 533.en_US
dc.identifier.citedreferenceJurneczko, E., Barran, P. E., How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst 2011, 136, 20 – 28.en_US
dc.identifier.citedreferenceRizzo, T. R., Stearns, J. A., Boyarkin, O. V., Spectroscopic studies of cold, gas‐phase biomolecular ions. Int. Rev. Phys. Chem. 2009, 28, 481 – 515.en_US
dc.identifier.citedreferenceFabris, D., Yu, E. T., Elucidating the higher‐order structure of biopolymers by structural probing and mass spectrometry: MS 3 D. J. Mass Spectrom. 2010, 45, 841 – 860.en_US
dc.identifier.citedreferenceSinz, A., Investigation of protein‐protein interactions in living cells by chemical crosslinking and mass spectrometry. Anal. Bioanal. Chem. 2010, 397, 3433 – 3440.en_US
dc.identifier.citedreferenceSharon, M., Robinson, C. V., The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu. Rev. Biochem. 2007, 76, 167 – 193.en_US
dc.identifier.citedreferenceRand, K. D., Adams, C. M., Zubarev, R. A., Jorgensen, T. J., Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens. J. Am. Chem. Soc. 2008, 130, 1341 – 1349.en_US
dc.identifier.citedreferencePan, J., Han, J., Borchers, C. H., Konermann, L., Hydrogen/deuterium exchange mass spectrometry with top‐down electron capture dissociation for characterizing structural transitions of a 17 k D a protein. J. Am. Chem. Soc. 2009, 131, 12801 – 12808.en_US
dc.identifier.citedreferenceRand, K. D., Zehl, M., Jensen, O. N., Jorgensen, T. J., Protein hydrogen exchange measured at single‐residue resolution by electron transfer dissociation mass spectrometry. Anal. Chem. 2009, 81, 5577 – 5584.en_US
dc.identifier.citedreferenceZhang, J., Chalmers, M. J., Stayrook, K. R., Burris, L. L. et al., Hydrogen/deuterium exchange reveals distinct agonist/partial agonist receptor dynamics within vitamin D receptor/retinoid X receptor heterodimer. Structure 2010, 18, 1332 – 1341.en_US
dc.identifier.citedreferenceWest, G. M., Chien, E. Y., Katritch, V., Gatchalian, J. et al., Ligand‐dependent perturbation of the conformational ensemble for the GPCR beta(2) adrenergic receptor revealed by HDX. Structure 2011, 19, 1424 – 1432.en_US
dc.identifier.citedreferenceMarcsisin, S. R., Narute, P. S., Emert‐Sedlak, L. A., Kloczewiak, M. et al., On the solution conformation and dynamics of the HIV ‐1 viral infectivity factor. J. Mol. Biol. 2011, 410, 1008 – 1022.en_US
dc.identifier.citedreferenceMorgan, C. R., Hebling, C. M., Rand, K. D., Stafford, D. W. et al., Conformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs. Mol. Cell Proteomics 2011, 10, M111. 010876.en_US
dc.identifier.citedreferencePan, J., Han, J., Borchers, C. H., Konermann, L., Characterizing short‐lived protein folding intermediates by top‐down hydrogen exchange mass spectrometry. Anal. Chem. 2010, 82, 8591 – 8597.en_US
dc.identifier.citedreferenceChoi, J. H., Banks, A. S., Kamenecka, T. M., Busby, S. A. et al., Antidiabetic actions of a non‐agonist PPAR gamma ligand blocking C dk5‐mediated phosphorylation. Nature 2011, 477, 477 – 481.en_US
dc.identifier.citedreferenceWang, L., Lane, L. C., Smith, D. L., Detecting structural changes in viral capsids by hydrogen exchange and mass spectrometry. Protein Sci. 2001, 10, 1234 – 1243.en_US
dc.identifier.citedreferenceZhang, X., Chien, E. Y., Chalmers, M. J., Pascal, B. D. et al., Dynamics of the beta2‐adrenergic G ‐protein coupled receptor revealed by hydrogen‐deuterium exchange. Anal. Chem. 2010, 82, 1100 – 1108.en_US
dc.identifier.citedreferenceHebling, C. M., Morgan, C. R., Stafford, D. W., Jorgenson, J. W. et al., Conformational analysis of membrane proteins in phospholipid bilayer nanodiscs by hydrogen exchange mass spectrometry. Anal. Chem. 2010, 82, 5415 – 5419.en_US
dc.identifier.citedreferenceToyama, B. H., Kelly, M. J., Gross, J. D., Weissman, J. S., The structural basis of yeast prion strain variants. Nature 2007, 449, 233 – 237.en_US
dc.identifier.citedreferenceSmirnovas, V., Baron, G. S., Offerdahl, D. K., Raymond, G. J. et al., Structural organization of brain‐derived mammalian prions examined by hydrogen‐deuterium exchange. Nat. Struct. Mol. Biol. 2011, 18, 504 – 506.en_US
dc.identifier.citedreferenceCarulla, N., Zhou, M., Giralt, E., Robinson, C. V. et al., Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange. Acc. Chem. Res. 2010, 43, 1072 – 1079.en_US
dc.identifier.citedreferenceWilliams, A. D., Sega, M., Chen, M., Kheterpal, I. et al., Structural properties of Abeta protofibrils stabilized by a small molecule. Proc. Natl. Acad. Sci. USA 2005, 102, 7115 – 7120.en_US
dc.identifier.citedreferenceMendoza, V. L., Vachet, R. W., Probing protein structure by amino acid‐specific covalent labeling and mass spectrometry. Mass Spectrom. Rev. 2009, 28, 785 – 815.en_US
dc.identifier.citedreferenceHambly, D. M., Gross, M. L., Laser flash photolysis of hydrogen peroxide to oxidize protein solvent‐accessible residues on the microsecond timescale. J. Am. Soc. Mass Spectrom. 2005, 16, 2057 – 2063.en_US
dc.identifier.citedreferenceStocks, B. B., Konermann, L., Structural characterization of short‐lived protein unfolding intermediates by laser‐induced oxidative labeling and mass spectrometry. Anal. Chem. 2009, 81, 20 – 27.en_US
dc.identifier.citedreferenceChen, J., Rempel, D. L., Gross, M. L., Temperature jump and fast photochemical oxidation probe submillisecond protein folding. J. Am. Chem. Soc. 2010, 132, 15502 – 15504.en_US
dc.identifier.citedreferenceStocks, B. B., Rezvanpour, A., Shaw, G. S., Konermann, L., Temporal development of protein structure during S 100 A 11 folding and dimerization probed by oxidative labeling and mass spectrometry. J. Mol. Biol. 2011, 409, 669 – 679.en_US
dc.identifier.citedreferenceWang, L., Qin, Y., Ilchenko, S., Bohon, J. et al., Structural analysis of a highly glycosylated and unliganded gp120‐based antigen using mass spectrometry. Biochemistry 2010, 49, 9032 – 9045.en_US
dc.identifier.citedreferenceAngel, T. E., Gupta, S., Jastrzebska, B., Palczewski, K. et al., Structural waters define a functional channel mediating activation of the GPCR, rhodopsin. Proc. Natl. Acad. Sci. USA 2009, 106, 14367 – 14372.en_US
dc.identifier.citedreferenceGavin, A. C., Bosche, M., Krause, R., Grandi, P. et al., Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002, 415, 141 – 147.en_US
dc.identifier.citedreferenceButland, G., Peregrin‐Alvarez, J. M., Li, J., Yang, W. et al., Interaction network containing conserved and essential protein complexes in E scherichia coli. Nature 2005, 433, 531 – 537.en_US
dc.identifier.citedreferenceGavin, A. C., Aloy, P., Grandi, P., Krause, R. et al., Proteome survey reveals modularity of the yeast cell machinery. Nature 2006, 440, 631 – 636.en_US
dc.identifier.citedreferenceKrogan, N. J., Cagney, G., Yu, H., Zhong, G. et al., Global landscape of protein complexes in the yeast S accharomyces cerevisiae. Nature 2006, 440, 637 – 643.en_US
dc.identifier.citedreferenceGavin, A. C., Maeda, K., Kuhner, S., Recent advances in charting protein‐protein interaction: mass spectrometry‐based approaches. Curr. Opin. Biotechnol. 2011, 22, 42 – 49.en_US
dc.identifier.citedreferenceRigaut, G., Shevchenko, A., Rutz, B., Wilm, M. et al., A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 1999, 17, 1030 – 1032.en_US
dc.identifier.citedreferenceEinhauer, A., Jungbauer, A., The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J. Biochem. Biophys. Methods 2001, 49, 455 – 465.en_US
dc.identifier.citedreferenceBlagoev, B., Kratchmarova, I., Ong, S. E., Nielsen, M. et al., A proteomics strategy to elucidate functional protein‐protein interactions applied to EGF signaling. Nat Biotechnol 2003, 21, 315 – 318.en_US
dc.identifier.citedreferenceRoss, P. L., Huang, Y. N., Marchese, J. N., Williamson, B. et al., Multiplexed protein quantitation in S accharomyces cerevisiae using amine‐reactive isobaric tagging reagents. Mol. Cell Proteomics 2004, 3, 1154 – 1169.en_US
dc.identifier.citedreferenceGygi, S. P., Rist, B., Gerber, S. A., Turecek, F. et al., Quantitative analysis of complex protein mixtures using isotope‐coded affinity tags. Nat. Biotechnol. 1999, 17, 994 – 999.en_US
dc.identifier.citedreferenceBouwmeester, T., Bauch, A., Ruffner, H., Angrand, P. O. et al., A physical and functional map of the human TNF ‐alpha/ NF ‐kappa B signal transduction pathway. Nat. Cell Biol. 2004, 6, 97 – 105.en_US
dc.identifier.citedreferenceJeronimo, C., Forget, D., Bouchard, A., Li, Q. et al., Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7 SK capping enzyme. Mol. Cell 2007, 27, 262 – 274.en_US
dc.identifier.citedreferenceBehrends, C., Sowa, M. E., Gygi, S. P., Harper, J. W., Network organization of the human autophagy system. Nature 2010, 466, 68 – 76.en_US
dc.identifier.citedreferenceSowa, M. E., Bennett, E. J., Gygi, S. P., Harper, J. W., Defining the human deubiquitinating enzyme interaction landscape. Cell 2009, 138, 389 – 403.en_US
dc.identifier.citedreferenceJao, D. L., Chen, K. Y., Tandem affinity purification revealed the hypusine‐dependent binding of eukaryotic initiation factor 5 A to the translating 80 S ribosomal complex. J. Cell Biochem. 2006, 97, 583 – 598.en_US
dc.identifier.citedreferenceBehzadnia, N., Golas, M. M., Hartmuth, K., Sander, B. et al., Composition and three‐dimensional EM structure of double affinity‐purified, human prespliceosomal A complexes. EMBO J. 2007, 26, 1737 – 1748.en_US
dc.identifier.citedreferencede Wulf, P., McAinsh, A. D., Sorger, P. K., Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 2003, 17, 2902 – 2921.en_US
dc.identifier.citedreferenceRappsilber, J., The beginning of a beautiful friendship: cross‐linking/mass spectrometry and modelling of proteins and multi‐protein complexes. J. Struct. Biol. 2011, 173, 530 – 540.en_US
dc.identifier.citedreferenceLee, Y. J., Lackner, L. L., Nunnari, J. M., Phinney, B. S., Shotgun cross‐linking analysis for studying quaternary and tertiary protein structures. J. Proteome Res. 2007, 6, 3908 – 3917.en_US
dc.identifier.citedreferenceVasilescu, J., Guo, X. C., Kast, J., Identification of protein‐protein interactions using in vivo cross‐linking and mass spectrometry. Proteomics 2004, 4, 3845 – 3854.en_US
dc.identifier.citedreferenceChu, F., Shan, S. O., Moustakas, D. T., Alber, F. et al., Unraveling the interface of signal recognition particle and its receptor by using chemical cross‐linking and tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 2004, 101, 16454 – 16459.en_US
dc.identifier.citedreferenceChu, F., Maynard, J. C., Chiosis, G., Nicchitta, C. V. et al., Identification of novel quaternary domain interactions in the H sp90 chaperone, GRP 94. Protein Sci. 2006, 15, 1260 – 1269.en_US
dc.identifier.citedreferenceMaiolica, A., Cittaro, D., Borsotti, D., Sennels, L. et al., Structural analysis of multiprotein complexes by cross‐linking, mass spectrometry, and database searching. Mol. Cell Proteomics 2007, 6, 2200 – 2211.en_US
dc.identifier.citedreferenceSchulz, D. M., Kalkhof, S., Schmidt, A., Ihling, C. et al., Annexin A 2/ P 11 interaction: new insights into annexin A 2 tetramer structure by chemical crosslinking, high‐resolution mass spectrometry, and computational modeling. Proteins 2007, 69, 254 – 269.en_US
dc.identifier.citedreferencePimenova, T., Nazabal, A., Roschitzki, B., Seebacher, J. et al., Epitope mapping on bovine prion protein using chemical cross‐linking and mass spectrometry. J. Mass Spectrom. 2008, 43, 185 – 195.en_US
dc.identifier.citedreferenceDimova, K., Kalkhof, S., Pottratz, I., Ihling, C. et al., Structural insights into the calmodulin‐Munc13 interaction obtained by cross‐linking and mass spectrometry. Biochemistry 2009, 48, 5908 – 5921.en_US
dc.identifier.citedreferenceTrnka, M. J., Burlingame, A. L., Topographic studies of the G ro EL ‐ G ro ES chaperonin complex by chemical cross‐linking using diformyl ethynylbenzene: the power of high resolution electron transfer dissociation for determination of both peptide sequences and their attachment sites. Mol. Cell Proteomics 2010, 9, 2306 – 2317.en_US
dc.identifier.citedreferenceChen, Z. A., Jawhari, A., Fischer, L., Buchen, C. et al., Architecture of the RNA polymerase II‐ TF II F complex revealed by cross‐linking and mass spectrometry. EMBO J. 2010, 29, 717 – 726.en_US
dc.identifier.citedreferenceSinz, A., Chemical cross‐linking and mass spectrometry for mapping three‐dimensional structures of proteins and protein complexes. J. Mass Spectrom. 2003, 38, 1225 – 1237.en_US
dc.identifier.citedreferenceSinz, A., Chemical cross‐linking and mass spectrometry to map three‐dimensional protein structures and protein‐protein interactions. Mass Spectrom. Rev. 2006, 25, 663 – 682.en_US
dc.identifier.citedreferencePetrotchenko, E. V., Xiao, K., Cable, J., Chen, Y. et al., B i PS, a photocleavable, isotopically coded, fluorescent cross‐linker for structural proteomics. Mol. Cell Proteomics 2009, 8, 273 – 286.en_US
dc.identifier.citedreferenceNovak, P., Giannakopulos, A. E., Chemical cross‐linking and mass spectrometry as structure determination tools. Eur. J. Mass Spectrom. (Chichester, Eng.) 2007, 13, 105 – 113.en_US
dc.identifier.citedreferencePanchaud, A., Singh, P., Shaffer, S. A., Goodlett, D. R., xComb: a cross‐linked peptide database approach to protein‐protein interaction analysis. J. Proteome Res. 2010, 9, 2508 – 2515.en_US
dc.identifier.citedreferenceGao, Q. X., Xue, S., Doneanu, C. E., Shaffer, S. A. et al., Pro‐CrossLink. software tool for protein cross‐linking and mass spectrometry. Anal. Chem. 2006, 78, 2145 – 2149.en_US
dc.identifier.citedreferenceMuller, M. Q., Dreiocker, F., Ihling, C. H., Schafer, M. et al., Cleavable cross‐linker for protein structure analysis: reliable identification of cross‐linking products by tandem MS. Anal. Chem. 2010, 82, 6958 – 6968.en_US
dc.identifier.citedreferenceDreiocker, F., Muller, M. Q., Sinz, A., Schafer, M., Collision‐induced dissociative chemical cross‐linking reagent for protein structure characterization: applied E dman chemistry in the gas phase. J. Mass Spectrom. 2010, 45, 178 – 189.en_US
dc.identifier.citedreferenceLu, Y. L., Tanasova, M., Borhan, B., Reid, G. E., Ionic reagent for controlling the gas‐phase fragmentation reactions of cross‐linked peptides. Anal. Chem. 2008, 80, 9279 – 9287.en_US
dc.identifier.citedreferenceSoderblom, E. J., Bobay, B. G., Cavanagh, J., Goshe, M. B., Tandem mass spectrometry acquisition approaches to enhance identification of protein‐protein interactions using low‐energy collision‐induced dissociative chemical crosslinking reagents. Rapid Commun. Mass Spectrom. 2007, 21, 3395 – 3408.en_US
dc.identifier.citedreferenceHoopmann, M. R., Weisbrod, C. R., Bruce, J. E., Improved strategies for rapid identification of chemically cross‐linked peptides using protein interaction reporter technology. J. Proteome Res. 2010, 9, 6323 – 6333.en_US
dc.identifier.citedreferenceJaya, N., Garcia, V., Vierling, E., Substrate binding site flexibility of the small heat shock protein molecular chaperones. Proc. Natl. Acad. Sci. USA 2009, 106, 15604 – 15609.en_US
dc.identifier.citedreferenceAndreasson, C., Fiaux, J., Rampelt, H., Druffel‐Augustin, S. et al., Insights into the structural dynamics of the H sp110‐ H sp70 interaction reveal the mechanism for nucleotide exchange activity. Proc. Natl. Acad. Sci. USA 2008, 105, 16519 – 16524.en_US
dc.identifier.citedreferenceSharon, M., Taverner, T., Ambroggio, X. I., Deshaies, R. J. et al., Structural organization of the 19 S proteasome lid: insights from MS of intact complexes. PLoS Biol 2006, 4, 1314–1323.en_US
dc.identifier.citedreferenceScaloni, A., Miraglia, N., Orru, S., Amodeo, P. et al., Topology of the calmodulin‐melittin complex. J. Mol. Biol. 1998, 277, 945 – 958.en_US
dc.identifier.citedreferenceSchulz, D. M., Ihling, C., Clore, G. M., Sinz, A., Mapping the topology and determination of a low‐resolution three‐dimensional structure of the calmodulin‐melittin complex by chemical cross‐linking and high‐resolution FTICRMS: direct demonstration of multiple binding modes. Biochemistry 2004, 43, 4703 – 4715.en_US
dc.identifier.citedreferenceKang, S., Hawkridge, A. M., Johnson, K. L., Muddiman, D. C. et al., Identification of subunit‐subunit interactions in bacteriophage P 22 procapsids by chemical cross‐linking and mass spectrometry. J. Proteome Res. 2006, 5, 370 – 377.en_US
dc.identifier.citedreferenceCai, K., Itoh, Y., Khorana, H. G., Mapping of contact sites in complex formation between transducin and light‐activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent. Proc. Natl. Acad. Sci. USA 2001, 98, 4877 – 4882.en_US
dc.identifier.citedreferenceItoh, Y., Cai, K., Khorana, H. G., Mapping of contact sites in complex formation between light‐activated rhodopsin and transducin by covalent crosslinking: use of a chemically preactivated reagent. Proc. Natl. Acad. Sci. USA 2001, 98, 4883 – 4887.en_US
dc.identifier.citedreferenceBack, J. W., Sanz, M. A., de Jong, L., de Koning, L. J. et al., A structure for the yeast prohibitin complex: structure prediction and evidence from chemical crosslinking and mass spectrometry. Protein Sci. 2002, 11, 2471 – 2478.en_US
dc.identifier.citedreferenceFelitsyn, N., Kitova, E. N., Klassen, J. S., Thermal decomposition of a gaseous multiprotein complex studied by blackbody infrared radiative dissociation. Investigating the origin of the asymmetric dissociation behavior. Anal. Chem. 2001, 73, 4647 – 4661.en_US
dc.identifier.citedreferenceKitova, E. N., Kitov, P. I., Bundle, D. R., Klassen, J. S., The observation of multivalent complexes of S higa‐like toxin with globotriaoside and the determination of their stoichiometry by nanoelectrospray F ourier‐transform ion cyclotron resonance mass spectrometry. Glycobiology 2001, 11, 605 – 611.en_US
dc.identifier.citedreferenceJurchen, J. C., Garcia, D. E., Williams, E. R., Further studies on the origins of asymmetric charge partitioning in protein homodimers. J. Am. Soc. Mass Spectrom. 2004, 15, 1408 – 1415.en_US
dc.identifier.citedreferenceJurchen, J. C., Williams, E. R., Origin of asymmetric charge partitioning in the dissociation of gas‐phase protein homodimers. J. Am. Chem. Soc. 2003, 125, 2817 – 2826.en_US
dc.identifier.citedreferenceVersluis, C., van der Staaij, A., Stokvis, E., Heck, A. J. et al., Metastable ion formation and disparate charge separation in the gas‐phase dissection of protein assemblies studied by orthogonal time‐of‐flight mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 329 – 336.en_US
dc.identifier.citedreferenceRostom, A. A., Sunde, M., Richardson, S. J., Schreiber, G. et al., Dissection of multi‐protein complexes using mass spectrometry: subunit interactions in transthyretin and retinol‐binding protein complexes. Proteins 1998, 33, 3 – 11.en_US
dc.identifier.citedreferenceBenesch, J. L., Aquilina, J. A., Ruotolo, B. T., Sobott, F. et al., Tandem mass spectrometry reveals the quaternary organization of macromolecular assemblies. Chem. Biol. 2006, 13, 597 – 605.en_US
dc.identifier.citedreferenceRuotolo, B. T., Hyung, S. J., Robinson, P. M., Giles, K. et al., Ion mobility‐mass spectrometry reveals long‐lived, unfolded intermediates in the dissociation of protein complexes. Angew Chem. Int. Ed. Engl. 2007, 46, 8001 – 8004.en_US
dc.identifier.citedreferenceRuotolo, B. T., Giles, K., Campuzano, I., Sandercock, A. M. et al., Evidence for macromolecular protein rings in the absence of bulk water. Science 2005, 310, 1658 – 1661.en_US
dc.identifier.citedreferenceDuijn, E. V., Barendregt, A., Synowsky, S., Versluis, C. et al., Chaperonin complexes monitored by ion mobility mass spectrometry. J Am Chem Soc 2009, 131, 1452 – 1459.en_US
dc.identifier.citedreferenceBenesch, J. L., Ruotolo, B. T., Sobott, F., Wildgoose, J. et al., Quadrupole‐time‐of‐flight mass spectrometer modified for higher‐energy dissociation reduces protein assemblies to peptide fragments. Anal. Chem. 2009, 81, 1270 – 1274.en_US
dc.identifier.citedreferencePagel, K., Hyung, S. J., Ruotolo, B. T., Robinson, C. V., Alternate dissociation pathways identified in charge‐reduced protein complex ions. Anal. Chem. 2010, 82, 5363 – 5372.en_US
dc.identifier.citedreferenceGe, Y., Lawhorn, B. G., ElNaggar, M., Strauss, E. et al., Top down characterization of larger proteins (45 k D a) by electron capture dissociation mass spectrometry. J. Am. Chem. Soc. 2002, 124, 672 – 678.en_US
dc.identifier.citedreferenceHorn, D. M., Zubarev, R. A., McLafferty, F. W., Automated de novo sequencing of proteins by tandem high‐resolution mass spectrometry. Proc. Natl. Acad. Sci. USA 2000, 97, 10313 – 10317.en_US
dc.identifier.citedreferenceWysocki, V. H., Joyce, K. E., Jones, C. M., Beardsley, R. L., Surface‐induced dissociation of small molecules, peptides, and non‐covalent protein complexes. J. Am. Soc. Mass Spectrom. 2008, 19, 190 – 208.en_US
dc.identifier.citedreferenceJones, C. M., Beardsley, R. L., Galhena, A. S., Dagan, S. et al., Symmetrical gas‐phase dissociation of noncovalent protein complexes via surface collisions. J. Am. Chem. Soc. 2006, 128, 15044 – 15045.en_US
dc.identifier.citedreferenceGalhena, A. S., Dagan, S., Jones, C. M., Beardsley, R. L. et al., Surface‐induced dissociation of peptides and protein complexes in a quadrupole/time‐of‐flight mass spectrometer. Anal. Chem. 2008, 80, 1425 – 1436.en_US
dc.identifier.citedreferenceBeardsley, R. L., Jones, C. M., Galhena, A. S., Wysocki, V. H., Noncovalent protein tetramers and pentamers with “n” charges yield monomers with n/4 and n/5 charges. Anal. Chem. 2009, 81, 1347 – 1356.en_US
dc.identifier.citedreferenceBlackwell, A. E., Dodds, E. D., Bandarian, V., Wysocki, V. H., Revealing the quaternary structure of a heterogeneous noncovalent protein complex through surface‐induced dissociation. Anal. Chem. 2011, 83, 2862 – 2865.en_US
dc.identifier.citedreferenceHernandez, H., Robinson, C. V., Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat. Protoc. 2007, 2, 715 – 726.en_US
dc.identifier.citedreferenceZhou, M., Sandercock, A. M., Fraser, C. S., Ridlova, G. et al., Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor e IF 3. Proc. Natl. Acad. Sci. USA 2008, 105, 18139 – 18144.en_US
dc.identifier.citedreferenceTaverner, T., Hernandez, H., Sharon, M., Ruotolo, B. T. et al., Subunit architecture of intact protein complexes from mass spectrometry and homology modeling. Acc. Chem. Res. 2008, 41, 617 – 627.en_US
dc.identifier.citedreferenceJore, M. M., Lundgren, M., van Duijn, E., Bultema, J. B. et al., Structural basis for CRISPR RNA ‐guided DNA recognition by C ascade. Nat. Struct. Mol. Biol. 2011, 18, 529 – 536.en_US
dc.identifier.citedreferenceTian, Y., Simanshu, D. K., Ascano, M., Diaz‐Avalos, R. et al., Multimeric assembly and biochemical characterization of the T rax‐translin endonuclease complex. Nat. Struct. Mol. Biol. 2011, 18, 658 – 664.en_US
dc.identifier.citedreferenceLane, L. A., Fernandez‐Tornero, C., Zhou, M., Morgner, N. et al., Mass spectrometry reveals stable modules in holo and apo RNA polymerases I and III. Structure 2011, 19, 90 – 100.en_US
dc.identifier.citedreferencePark, A. Y., Jergic, S., Politis, A., Ruotolo, B. T. et al., A single subunit directs the assembly of the E scherichia coli DNA sliding clamp loader. Structure 2010, 18, 285 – 292.en_US
dc.identifier.citedreferenceMunoz, I. G., Yebenes, H., Zhou, M., Mesa, P. et al., Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat. Struct. Mol. Biol. 2011, 18, 14 – 19.en_US
dc.identifier.citedreferenceGanem, B., Li, Y. T., Henion, J. D., Observation of noncovalent enzyme substrate and enzyme product complexes by ion‐spray mass‐spectrometry. J. Am. Chem. Soc. 1991, 113, 7818 – 7819.en_US
dc.identifier.citedreferenceKatta, V., Chait, B. T., Observation of the heme globin complex in native myoglobin by electrospray‐ionization mass‐spectrometry. J. Am. Chem. Soc. 1991, 113, 8534 – 8535.en_US
dc.identifier.citedreferenceMcCammon, M. G., Scott, D. J., Keetch, C. A., Greene, L. H. et al., Screening transthyretin amyloid fibril inhibitors: characterization of novel multiprotein, multiligand complexes by mass spectrometry. Structure 2002, 10, 851 – 863.en_US
dc.identifier.citedreferenceKitova, E. N., Seo, M., Roy, P. N., Klassen, J. S., Elucidating the intermolecular interactions within a desolvated protein‐ligand complex. An experimental and computational study. J. Am. Chem. Soc. 2008, 130, 1214 – 1226.en_US
dc.identifier.citedreferenceRobinson, C. V., Chung, E. W., Kragelund, B. B., Knudsen, J. et al., Probing the nature of noncovalent interactions by mass spectrometry. A study of protein− C oA Ligand Binding and Assembly. J. Am. Chem. Soc. 1996, 118, 8646 – 8653.en_US
dc.identifier.citedreferenceLoo, J. A., Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 1997, 16, 1 – 23.en_US
dc.identifier.citedreferenceBovet, C., Wortmann, A., Eiler, S., Granger, F. et al., Estrogen receptor‐ligand complexes measured by chip‐based nanoelectrospray mass spectrometry: an approach for the screening of endocrine disruptors. Protein Sci 2007, 16, 938 – 946.en_US
dc.identifier.citedreferenceWortmann, A., Jecklin, M. C., Touboul, D., Badertscher, M. et al. Binding constant determination of high‐affinity protein‐ligand complexes by electrospray ionization mass spectrometry and ligand competition. J. Mass Spectrom 2008, 43, 600 – 608.en_US
dc.identifier.citedreferenceLiu, J., Konermann, L., Protein‐protein binding affinities in solution determined by electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 2011, 22, 408 – 417.en_US
dc.identifier.citedreferenceKitova, E. N., Soya, N., Klassen, J. S., Identifying specific small‐molecule interactions using electrospray ionization mass spectrometry. Anal. Chem. 2011, 83, 5160 – 5167.en_US
dc.identifier.citedreferenceHyung, S. J., Robinson, C. V., Ruotolo, B. T., Gas‐phase unfolding and disassembly reveals stability differences in ligand‐bound multiprotein complexes. Chem. Biol. 2009, 16, 382 – 390.en_US
dc.identifier.citedreferenceGhaemmaghami, S., Fitzgerald, M. C., Oas, T. G., A quantitative, high‐throughput screen for protein stability. Proc. Natl. Acad. Sci. USA 2000, 97, 8296 – 8301.en_US
dc.identifier.citedreferenceZhu, M. M., Rempel, D. L., Du, Z., Gross, M. L., Quantification of protein‐ligand interactions by mass spectrometry, titration, and H / D exchange: PLIMSTEX. J. Am. Chem. Soc. 2003, 125, 5252 – 5253.en_US
dc.identifier.citedreferenceWest, G. M., Tang, L., Fitzgerald, M. C., Thermodynamic analysis of protein stability and ligand binding using a chemical modification‐ and mass spectrometry‐based strategy. Anal. Chem. 2008, 80, 4175 – 4185.en_US
dc.identifier.citedreferenceDearmond, P. D., Xu, Y., Strickland, E. C., Daniels, K. G. et al., Thermodynamic analysis of protein‐ligand interactions in complex biological mixtures using a Shotgun Proteomics Approach. J. Proteome Res. 2011, 10, 4948 – 4958.en_US
dc.identifier.citedreferenceRuotolo, B. T., Robinson, C. V., Aspects of native proteins are retained in vacuum. Curr. Opin. Chem. Biol. 2006, 10, 402 – 408.en_US
dc.identifier.citedreferenceLoo, J. A., Berhane, B., Kaddis, C. S., Wooding, K. M. et al., Electrospray ionization mass spectrometry and ion mobility analysis of the 20 S proteasome complex. J. Am. Soc. Mass Spectrom. 2005, 16, 998 – 1008.en_US
dc.identifier.citedreferenceBernstein, S. L., Wyttenbach, T., Baumketner, A., Shea, J. E. et al., Amyloid beta‐protein: monomer structure and early aggregation states of A beta42 and its P ro19 alloform. J. Am. Chem. Soc. 2005, 127, 2075 – 2084.en_US
dc.identifier.citedreferenceBowers, M. T., Kemper, P. R., von Helden, G., van Koppen, P. A., Gas‐phase ion chromatography: transition metal state selection and carbon cluster formation. Science 1993, 260, 1446 – 1451.en_US
dc.identifier.citedreferenceKemper, P. R., Bowers, M. T., Electronic‐state chromatography: application to first‐row transition‐metal ions. J. Phys. Chem. 1991, 95, 5134 – 5146.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.