Show simple item record

Liquid Crystal Order in Colloidal Suspensions of Spheroidal Particles by Direct Current Electric Field Assembly

dc.contributor.authorShah, Aayush A.en_US
dc.contributor.authorKang, Heekyoungen_US
dc.contributor.authorKohlstedt, Kevin L.en_US
dc.contributor.authorAhn, Kyung Hyunen_US
dc.contributor.authorGlotzer, Sharon C.en_US
dc.contributor.authorMonroe, Charles W.en_US
dc.contributor.authorSolomon, Michael J.en_US
dc.date.accessioned2012-07-12T17:25:09Z
dc.date.available2013-07-01T14:33:06Zen_US
dc.date.issued2012-05-21en_US
dc.identifier.citationShah, Aayush A.; Kang, Heekyoung; Kohlstedt, Kevin L.; Ahn, Kyung Hyun; Glotzer, Sharon C.; Monroe, Charles W.; Solomon, Michael J. (2012). "Liquid Crystal Order in Colloidal Suspensions of Spheroidal Particles by Direct Current Electric Field Assembly." Small 8(10): 1551-1562. <http://hdl.handle.net/2027.42/92091>en_US
dc.identifier.issn1613-6810en_US
dc.identifier.issn1613-6829en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92091
dc.description.abstractD C electric fields are used to produce colloidal assemblies with orientational and layered positional order from a dilute suspension of spheroidal particles. These 3D assemblies, which can be visualized in situ by confocal microscopy, are achieved in short time spans ( t < 1 h) by the application of a constant voltage across the capacitor‐like device. This method yields denser and more ordered assemblies than had been previously reported with other assembly methods. Structures with a high degree of orientational order as well as layered positional order normal to the electrode surface are observed. These colloidal structures are explained as a consequence of electrophoretic deposition and field‐assisted assembly. The interplay between the deposition rate and the rotational Brownian motion is found to be critical for the optimal ordering, which occurs when these rates, as quantified by the Peclet number, are of order one. The results suggest that the mechanism leading to ordering is equilibrium self‐assembly but with kinetics dramatically accelerated by the application of the DC electric field. Finally, the crystalline symmetry of the densest structure formed is determined and compared with previously studied spheroidal assemblies. Rapid assembly of anisotropic colloidal particles is essential to create complex, uniform, and scalable crystal structures for applications. In this study, DC electric fields are used to accelerate the self‐assembly process of spheroidal particles. The image shows confocal microscopy images and renderings from image processing of the field‐induced 3D ordering. The assembly is shown to have high‐quality orientational order and previously unobserved periodic and dense layered ordering.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherSpheroidsen_US
dc.subject.otherSelf‐Assemblyen_US
dc.subject.otherField‐Assisted Assemblyen_US
dc.subject.otherColloidal Materialsen_US
dc.subject.otherRod Liquid Crystal Phaseen_US
dc.titleLiquid Crystal Order in Colloidal Suspensions of Spheroidal Particles by Direct Current Electric Field Assemblyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumProgram of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumProgram of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, 3410 G.G. Brown, 2300 Hayward Street, Ann Arbor, MI 48109‐2136en_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherSchool of Chemical and Biological Engineering, Seoul National University, Seoul, Koreaen_US
dc.identifier.pmid22383392en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92091/1/1551_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92091/2/smll_201102265_sm_suppl.pdf
dc.identifier.doi10.1002/smll.201102265en_US
dc.identifier.sourceSmallen_US
dc.identifier.citedreferenceK. S. Napolskii, N. A. Sapoletova, D. F. Gorozhankin, A. A. Eliseev, D. Y. Chernyshov, D. V. Byelov, N. A. Grigoryeva, A. A. Mistonov, W. G. Bouwman, K. O. Kvashnina, A. V. Lukashin, A. A. Snigirev, A. V. Vassilieva, S. V. Grigoriev, A. V. Petukhov, Langmuir 2010, 26, 2346.en_US
dc.identifier.citedreferenceM. Radu, P. Pfleiderer, T. Schilling, J. Chem. Phys. 2009, 131, 164513.en_US
dc.identifier.citedreferenceD. Mukhija, M. J. Solomon, Soft Matter 2011, 7, 540.en_US
dc.identifier.citedreferenceZ. Dogic, S. Fraden, Curr. Opin. Colloid Interface Sci. 2006, 11, 47.en_US
dc.identifier.citedreferenceM. P. B. vanBruggen, F. M. vanderKooij, H. N. W. Lekkerkerker, J. Phys. Condensed Matter 1996, 8, 9451.en_US
dc.identifier.citedreferenceR. Ni, S. Belli, R. van Rene, M. Dijkstra, Phys. Rev. Lett. 2010, 105, 088302.en_US
dc.identifier.citedreferenceL. T. Shereda, R. G. Larson, M. J. Solomon, Phys. Rev. Lett. 2010, 105, 038301.en_US
dc.identifier.citedreferenceJ. P. Hoogenboom, P. Vergeer, A. van Blaaderen, J. Chem. Phys. 2003, 119, 3371.en_US
dc.identifier.citedreferenceA. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, G. A. Ragoisha, Chem. Mater. 2000, 12, 2721.en_US
dc.identifier.citedreferenceM. Grzelczak, J. Vermant, E. M. Furst, L. M. Liz‐Marzan, ACS Nano 2010, 4, 3591.en_US
dc.identifier.citedreferenceJ. J. Juárez, M. A. Bevan, J. Chem. Phys. 2009, 131, 134704.en_US
dc.identifier.citedreferenceN. Li, H. D. Newman, M. Valera, I. Saika‐Voivod, A. Yethiraj, Soft Matter 2009, 6, 876.en_US
dc.identifier.citedreferenceS. O. Lumsdon, E. W. Kaler, O. D. Velev, Langmuir 2004, 20, 2108.en_US
dc.identifier.citedreferenceO. D. Velev, K. H. Bhatt, Soft Matter 2006, 2, 738.en_US
dc.identifier.citedreferenceM. E. Leunissen, M. T. Sullivan, P. M. Chaikin, A. van Blaaderen, J. Chem. Phys. 2008, 128, 164508.en_US
dc.identifier.citedreferenceM. T. Sullivan, K. Zhao, A. D. Hollingsworth, R. H. Austin, W. B. Russel, P. M. Chaikin, Phys. Rev. Lett. 2006, 96, 15703.en_US
dc.identifier.citedreferenceJ. P. Singh, P. P. Lele, F. Nettesheim, N. J. Wagner, E. M. Furst, Phys. Rev. E 2009, 79, 050401.en_US
dc.identifier.citedreferenceM. Trau, D. A. Saville, I. A. Aksay, Science 1996, 272, 706.en_US
dc.identifier.citedreferenceS. V. Savenko, M. Dijkstra, Phys. Rev. E 2004, 70, 051401.en_US
dc.identifier.citedreferenceW. B. Russel, D. A. Saville, W. R. Schowalter, Colloidal Dispersions, Cambridge University Press, Cambridge, Great Britain, 1989, p. 411.en_US
dc.identifier.citedreferenceM. Teubner, J. Chem. Phys. 1982, 76, 5564.en_US
dc.identifier.citedreferenceA. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, Hoboken, NJ, 2001, p. 12.en_US
dc.identifier.citedreferenceY. Solomentsev, M. Bohmer, J. L. Anderson, Langmuir 1997, 13, 6058.en_US
dc.identifier.citedreferenceH. Brenner, Int. J. Multiphase Flow 1974, 1, 195.en_US
dc.identifier.citedreferenceB. Tjipto‐Margo, G. T. Evans, J. Chem. Phys. 1990, 93, 4254.en_US
dc.identifier.citedreferenceZ. Dogic, K. R. Purdy, E. Grelet, M. Adams, S. Fraden, Phys. Rev. E 2004, 69, 051702.en_US
dc.identifier.citedreferenceR. Henríquez, M. Froment, G. Riveros, E. A. Dalchiele, H. Gómez, P. Grez, D. Lincot, J. Phys. Chem. C 2007, 111, 6017.en_US
dc.identifier.citedreferenceG. Yatsenko, K. S. Schweizer, Langmuir 2008, 24, 7474.en_US
dc.identifier.citedreferenceI. D. Hosein, S. H. Lee, C. M. Liddell, Adv. Funct. Mater. 2010, 20, 3085.en_US
dc.identifier.citedreferenceE. B. Mock, C. F. Zukoski, Langmuir 2007, 23, 8760.en_US
dc.identifier.citedreferenceQ. Chen, J. K. Whitmer, S. Jiang, S. C. Bae, E. Luijten, S. Granick, Science 2011, 331, 199.en_US
dc.identifier.citedreferenceS. P. Dzul, M. M. Thornton, D. N. Hohne, E. J. Stewart, A. A. Shah, D. M. Bortz, M. J. Solomon, J. G. Younger, Appl. Environ. Microbiol. 2011, 77, 1777.en_US
dc.identifier.citedreferenceS. C. Glotzer, M. J. Solomon, Nat. Mater. 2007, 6, 557.en_US
dc.identifier.citedreferenceU. Agarwal, F. A. Escobedo, Nat. Mater. 2011, 10, 230.en_US
dc.identifier.citedreferenceP. F. Damasceno, M. Engel, S. C. Glotzer, ACS Nano 2012, 6, 609.en_US
dc.identifier.citedreferenceY. Kallus, V. Elser, Phys. Rev. E 2011, 83, 036703.en_US
dc.identifier.citedreferenceM. J. Solomon, Curr. Opin. Colloid Interface Sci. 2011, 16, 158.en_US
dc.identifier.citedreferenceD. Frenkel, B. M. Mulder, Mol. Phys. 2002, 100, 201.en_US
dc.identifier.citedreferenceA. P. Hynninen, J. H. J. Thijssen, E. C. M. Vermolen, M. Dijkstra, A. Van Blaaderen, Nat. Mater. 2007, 6, 202.en_US
dc.identifier.citedreferenceT. Koschny, L. Zhang, C. M. Soukoulis, Phys. Rev. B 2005, 71, 121103.en_US
dc.identifier.citedreferenceM. J. Solomon, Nature 2010, 464, 496.en_US
dc.identifier.citedreferenceC. C. Ho, A. Keller, J. A. Odell, R. H. Ottewill, Colloid Polym. Sci. 1993, 271, 469.en_US
dc.identifier.citedreferenceK. M. Keville, E. I. Franses, J. M. Caruthers, J. Colloid Interface Sci. 1991, 144, 103.en_US
dc.identifier.citedreferenceZ. K. Zhang, P. Pfleiderer, A. B. Schofield, C. Clasen, J. Vermant, J. Am. Chem. Soc. 2011, 133, 392.en_US
dc.identifier.citedreferenceA. Mohraz, M. J. Solomon, Langmuir 2005, 21, 5298.en_US
dc.identifier.citedreferenceP. Pfleiderer, T. Schilling, Phys. Rev. E 2007, 75, 020402.en_US
dc.identifier.citedreferenceA. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R. Connelly, S. Torquato, P. M. Chaikin, Science 2004, 303, 990.en_US
dc.identifier.citedreferenceA. Donev, F. H. Stillinger, P. M. Chaikin, S. Torquato, Phys. Rev. Lett. 2004, 92, 255506.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.