Show simple item record

Extending the tools of single‐molecule fluorescence imaging to problems in microbiology

dc.contributor.authorBiteen, Julie S.en_US
dc.date.accessioned2012-07-12T17:25:21Z
dc.date.available2013-09-03T15:38:27Zen_US
dc.date.issued2012-07en_US
dc.identifier.citationBiteen, Julie S. (2012). "Extending the tools of single‐molecule fluorescence imaging to problems in microbiology." Molecular Microbiology 85(1). <http://hdl.handle.net/2027.42/92099>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92099
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.titleExtending the tools of single‐molecule fluorescence imaging to problems in microbiologyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48104, USA.en_US
dc.identifier.pmid22571513en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92099/1/j.1365-2958.2012.08089.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2012.08089.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceShaner, N.C., Lin, M.Z., McKeown, M.R., Steinbach, P.A., Hazelwood, K.L., Davidson, M.W., and Tsien, R.Y. ( 2008 ) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5: 545 – 551.en_US
dc.identifier.citedreferenceLlopis, P.M., Jackson, A.F., Sliusareko, O., Surovstev, I., Heinritz, J., Emonet, T., and Jacobs‐Wagner, C. ( 2010 ) Spatial organization of the flow of genetic information in bacteria. Nature 466: 77 – 81.en_US
dc.identifier.citedreferenceManley, S., Gillette, J.M., Patterson, G.H., Shroff, H., Hess, H.F., Betzig, E., and Lippincott‐Schwartz, J. ( 2008 ) High‐density mapping of single‐molecule trajectories with photoactivated localization microscopy. Nat Methods 5: 155 – 157.en_US
dc.identifier.citedreferenceMascarenhas, J., Weber, M.H.W., and Graumann, P.L. ( 2001 ) Specific polar localization of ribosomes in Bacillus subtilis depends on active transcription. EMBO Rep 2: 685 – 689.en_US
dc.identifier.citedreferenceMoerner, W.E., and Kador, L. ( 1989 ) Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 62: 2535 – 2538.en_US
dc.identifier.citedreferencePavani, S.R.P., Thompson, M.A., Biteen, J.S., Lord, S.J., Liu, N., Twieg, R.J., et al. ( 2009 ) Three‐dimensional, single‐molecule fluorescence imaging beyond the diffraction limit by using a double‐helix point spread function. Proc Natl Acad Sci USA 106: 2995 – 2999.en_US
dc.identifier.citedreferenceRust, M.J., Bates, M., and Zhuang, X. ( 2006 ) Sub‐diffraction‐limit imagingq by stochastic optical reconstruction microscopy (STORM). Nat Methods 3: 793 – 795.en_US
dc.identifier.citedreferenceSharonov, A., and Hochstrasser, R.M. ( 2006 ) Wide‐field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci USA 103: 18911 – 18916.en_US
dc.identifier.citedreferenceShtengel, G., Galbraith, J.A., Galbraith, C.G., Lippincott‐Schwartz, J., Gillette, J.M., Manley, S., et al. ( 2009 ) Interferometric fluorescent super‐resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci USA 106: 3125 – 3130.en_US
dc.identifier.citedreferenceVogelsang, J., Cordes, T., Forthmann, C., Steinhauer, C., and Tinnefeld, P. ( 2009 ) Controlling the fluorescence of ordinary oxazine dyes for single‐molecule switching and superresolution microscopy. Proc Natl Acad Sci USA 106: 8107 – 8112.en_US
dc.identifier.citedreferenceWang, W., Li, G., Chen, C., Xie, X.S., and Zhuang, X. ( 2011 ) Chromosome organization by a nucleoid‐associated protein in live bacteria. Science 333: 1445 – 1449.en_US
dc.identifier.citedreferenceWoldringh, C.L. ( 2002 ) The role of co‐transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol Microbiol 45: 17 – 29.en_US
dc.identifier.citedreferenceWombacher, R., and Cornish, V.W. ( 2011 ) Chemical tags: applications in live cell fluorescence imaging. J Biophotonics 4: 391 – 402.en_US
dc.identifier.citedreferenceYildiz, A., Forkey, J.N., McKinner, S.A., Ha, T., Goldman, Y.E., and Selvin, P.R. ( 2003 ) Myosin V walks hand‐over‐hand: single fluorophore imaging with 1.5‐nm localization. Science 300: 2061 – 2065.en_US
dc.identifier.citedreferenceYu, J., Xiao, J., Ren, X., Lao, K., and Xie, X.S. ( 2006 ) Probing gene expression in live cells, one protein molecule at a time. Science 311: 1600 – 1603.en_US
dc.identifier.citedreferenceBakshi, S., Siryaporn, A., Goulian, M., and Weisshaar, J.C. ( 2012 ) Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol Microbiol 85: 21 – 38.en_US
dc.identifier.citedreferenceBetzig, E. ( 1995 ) Proposed method for molecular optical imaging. Opt Lett 20: 237 – 239.en_US
dc.identifier.citedreferenceBetzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., et al. ( 2006 ) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313: 1642 – 1645.en_US
dc.identifier.citedreferenceBiteen, J.S., Thompson, M.A., Tselentis, N.K., Bowman, G.R., Shapiro, L., and Moerner, W.E. ( 2008 ) Super‐resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods 5: 947 – 949.en_US
dc.identifier.citedreferenceBiteen, J.S., Goley, E.D., Shapiro, L., and Moerner, W.E. ( 2012 ) Three‐dimensional super‐resolution imaging of the midplane protein FtsZ in live Caulobacter crescentus cells using astigmatism. Chemphyschem 13: 1007 – 1012.en_US
dc.identifier.citedreferenceBowman, G.R., Comolli, L.R., Zhu, J., Eckart, M., Koenig, M., Downing, K.H., et al. ( 2008 ) A polymeric protein anchors the chromosomal Origin/ParB complex at a bacterial cell pole. Cell 134: 945 – 955.en_US
dc.identifier.citedreferenceChoi, P.J., Cai, L., Frieda, K., and Xie, X.S. ( 2008 ) A stochastic single‐molecule event triggers phenotype switching of a bacterial cell. Science 322: 442 – 446.en_US
dc.identifier.citedreferenceChurchman, L.S., Oekten, Z., Rock, R.S., Dawson, J.F., and Spudich, J.A. ( 2005 ) Single molecule high‐resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc Natl Acad Sci USA 102: 1419 – 1423.en_US
dc.identifier.citedreferenceDeich, J., Judd, E.M., McAdams, H.H., and Moerner, W.E. ( 2004 ) Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. Proc Natl Acad Sci USA 101: 15921 – 15926.en_US
dc.identifier.citedreferenceElf, J., Li, G.W., and Xie, X.S. ( 2007 ) Probing transcription factor dynamics at the single‐molecule level in a living cell. Science 316: 1191 – 1194.en_US
dc.identifier.citedreferenceFölling, J., Belov, V., Kunetsky, R., Medda, R., Schönle, A., Egner, A., et al. ( 2007 ) Photochromic rhodamines provide nanoscopy with optical sectioning. Angew Chem Int Ed Engl 46: 6266 – 6270.en_US
dc.identifier.citedreferenceFu, G., Huang, T., Buss, J., Coltharp, C., Hensel, Z., and Xiao, J. ( 2010 ) In vivo structure of the E. coli FtsZ‐ring revealed by photoactivated localization microscopy (PALM). PLoS ONE 5: e12680.en_US
dc.identifier.citedreferenceGolding, I., and Cox, E.C. ( 2006 ) Physical nature of bacterial cytoplasm. Phys Rev Lett 96: 098102.en_US
dc.identifier.citedreferenceHess, S.T., Girirajan, T.P.K., and Mason, M.D. ( 2006 ) Ultra‐high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91: 4258 – 4272.en_US
dc.identifier.citedreferenceHuang, B., Wang, W., Bates, M., and Zhuang, X. ( 2008 ) Three‐dimensional super‐resolution imaging by stochastic optical reconstruction microscopy. Science 319: 810 – 813.en_US
dc.identifier.citedreferenceJuette, M.F., Gould, T.J., Lessard, M.D., Mlodzianoski, M.J., Nagpure, B.S., Bennett, B.T., et al. ( 2008 ) Three‐dimensional sub‐100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5: 527 – 529.en_US
dc.identifier.citedreferenceKim, S.Y., Gitai, Z., Kinkhabwala, A., Shapiro, L., and Moerner, W.E. ( 2006 ) Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. Proc Natl Acad Sci USA 103: 10929 – 10934.en_US
dc.identifier.citedreferenceLakowicz, J.R. ( 2001 ) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298: 1 – 24.en_US
dc.identifier.citedreferenceLew, M.D., Lee, S.F., Ptacin, J.L., Lee, M.K., Tweig, R.J., Shapiro, L., and Moerner, W.E. ( 2011 ) Three‐dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus. Proc Natl Acad Sci USA 108: E1102 – E1110.en_US
dc.identifier.citedreferenceLewis, P.J., Thaker, S.D., and Errington, J. ( 2000 ) Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J 19: 710 – 718.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.