Show simple item record

Laforin is required for the functional activation of malin in endoplasmic reticulum stress resistance in neuronal cells

dc.contributor.authorZeng, Lien_US
dc.contributor.authorWang, Yinen_US
dc.contributor.authorBaba, Ottoen_US
dc.contributor.authorZheng, Panen_US
dc.contributor.authorLiu, Yangen_US
dc.contributor.authorLiu, Yanen_US
dc.date.accessioned2012-07-12T17:25:54Z
dc.date.available2013-09-03T15:38:28Zen_US
dc.date.issued2012-07en_US
dc.identifier.citationZeng, Li; Wang, Yin; Baba, Otto; Zheng, Pan; Liu, Yang; Liu, Yan (2012). "Laforin is required for the functional activation of malin in endoplasmic reticulum stress resistance in neuronal cells." FEBS Journal 279(14). <http://hdl.handle.net/2027.42/92119>en_US
dc.identifier.issn1742-464Xen_US
dc.identifier.issn1742-4658en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92119
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.subject.otherNeuronal Cellsen_US
dc.subject.otherPolyglucosanen_US
dc.subject.otherMalinen_US
dc.subject.otherLaforinen_US
dc.subject.otherEndoplasmic Reticulum Stressen_US
dc.titleLaforin is required for the functional activation of malin in endoplasmic reticulum stress resistance in neuronal cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum Department of Pathology, University of Michigan Medical Center, Ann Arbor, MI, USAen_US
dc.contributor.affiliationum Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USAen_US
dc.contributor.affiliationother Department of Hard Tissue Engineering, Tokyo Medical and Dental University, Tokyo, Japanen_US
dc.contributor.affiliationother Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Chinaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92119/1/j.1742-4658.2012.08627.x.pdf
dc.identifier.doi10.1111/j.1742-4658.2012.08627.xen_US
dc.identifier.sourceFEBS Journalen_US
dc.identifier.citedreferenceSengupta S, Badhwar I, Upadhyay M, Singh S & Ganesh S ( 2011 ) Malin and laforin are essential components of a protein complex that protects cells from thermal stress. J Cell Sci 124, 2277 – 2286.en_US
dc.identifier.citedreferenceVernia S, Solaz‐Fuster MC, Gimeno‐Alcaniz JV, Rubio T, Garcia‐Haro L, Foretz M, de Cordoba SR & Sanz P ( 2009 ) AMP‐activated protein kinase phosphorylates R5/PTG, the glycogen targeting subunit of the R5/PTG‐protein phosphatase 1 holoenzyme, and accelerates its down‐regulation by the laforin‐malin complex. J Biol Chem 284, 8247 – 8255.en_US
dc.identifier.citedreferenceWorby CA, Gentry MS & Dixon JE ( 2008 ) Malin decreases glycogen accumulation by promoting the degradation of protein targeting to glycogen (PTG). J Biol Chem 283, 4069 – 4076.en_US
dc.identifier.citedreferenceGaryali P, Siwach P, Singh PK, Puri R, Mittal S, Sengupta S, Parihar R & Ganesh S ( 2009 ) The malin‐laforin complex suppresses the cellular toxicity of misfolded proteins by promoting their degradation through the ubiquitin–proteasome system. Hum Mol Genet 18, 688 – 700.en_US
dc.identifier.citedreferenceMoreno D, Towler MC, Hardie DG, Knecht E & Sanz P ( 2010 ) The laforin–malin complex, involved in Lafora disease, promotes the incorporation of K63‐linked ubiquitin chains into AMP‐activated protein kinase beta subunits. Mol Biol Cell 21, 2578 – 2588.en_US
dc.identifier.citedreferenceSolaz‐Fuster MC, Gimeno‐Alcaniz JV, Ros S, Fernandez‐Sanchez ME, Garcia‐Fojeda B, Criado Garcia O, Vilchez D, Dominguez J, Garcia‐Rocha M, Sanchez‐Piris M et al. ( 2008 ) Regulation of glycogen synthesis by the laforin–malin complex is modulated by the AMP‐activated protein kinase pathway. Hum Mol Genet 17, 667 – 678.en_US
dc.identifier.citedreferenceWorby CA, Gentry MS & Dixon JE ( 2006 ) Laforin, a dual specificity phosphatase that dephosphorylates complex carbohydrates. J Biol Chem 281, 30412 – 30418.en_US
dc.identifier.citedreferenceTagliabracci VS, Turnbull J, Wang W, Girard JM, Zhao X, Skurat AV, Delgado‐Escueta AV, Minassian BA, Depaoli‐Roach AA & Roach PJ ( 2007 ) Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo. Proc Natl Acad Sci USA 104, 19262 – 19266.en_US
dc.identifier.citedreferenceTagliabracci VS, Heiss C, Karthik C, Contreras CJ, Glushka J, Ishihara M, Azadi P, Hurley TD, DePaoli‐Roach AA & Roach PJ ( 2011 ) Phosphate incorporation during glycogen synthesis and Lafora disease. Cell Metab 13, 274 – 282.en_US
dc.identifier.citedreferenceWang Y, Liu Y, Wu C, Zhang H, Zheng X, Zheng Z, Geiger TL, Nuovo GJ, Liu Y & Zheng P ( 2006 ) Epm2a suppresses tumor growth in an immunocompromised host by inhibiting Wnt signaling. Cancer Cell 10, 179 – 190.en_US
dc.identifier.citedreferencePuri R, Suzuki T, Yamakawa K & Ganesh S ( 2009 ) Hyperphosphorylation and aggregation of Tau in laforin‐deficient mice, an animal model for Lafora disease. J Biol Chem 284, 22657 – 22663.en_US
dc.identifier.citedreferenceLiu Y, Wang Y, Wu C, Liu Y & Zheng P ( 2009 ) Deletions and missense mutations of EPM2A exacerbate unfolded protein response and apoptosis of neuronal cells induced by endoplasm reticulum stress. Hum Mol Genet 18, 2622 – 2631.en_US
dc.identifier.citedreferenceWang Y, Liu Y, Wu C, McNally B, Liu Y & Zheng P ( 2008 ) Laforin confers cancer resistance to energy deprivation‐induced apoptosis. Cancer Res 68, 4039 – 4044.en_US
dc.identifier.citedreferenceVernia S, Rubio T, Heredia M, Rodriguez de Cordoba S & Sanz P ( 2009 ) Increased endoplasmic reticulum stress and decreased proteasomal function in lafora disease models lacking the phosphatase laforin. PLoS ONE 4, e5907.en_US
dc.identifier.citedreferenceMittal S, Dubey D, Yamakawa K & Ganesh S ( 2007 ) Lafora disease proteins malin and laforin are recruited to aggresomes in response to proteasomal impairment. Hum Mol Genet 16, 753 – 762.en_US
dc.identifier.citedreferenceRao SN, Maity R, Sharma J, Dey P, Shankar SK, Satishchandra P & Jana NR ( 2010 ) Sequestration of chaperones and proteasome into Lafora bodies and proteasomal dysfunction induced by Lafora disease‐associated mutations of malin. Hum Mol Genet 19, 4726 – 4734.en_US
dc.identifier.citedreferencePickart CM ( 2001 ) Mechanisms underlying ubiquitination. Annu Rev Biochem 70, 503 – 533.en_US
dc.identifier.citedreferenceTreiman M, Caspersen C & Christensen SB ( 1998 ) A tool coming of age: thapsigargin as an inhibitor of sarco‐endoplasmic reticulum Ca(2+)‐ATPases. Trends Pharmacol Sci 19, 131 – 135.en_US
dc.identifier.citedreferenceHelenius A ( 1994 ) How N‐linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell 5, 253 – 265.en_US
dc.identifier.citedreferencePederson BA, Csitkovits AG, Simon R, Schroeder JM, Wang W, Skurat AV & Roach PJ ( 2003 ) Overexpression of glycogen synthase in mouse muscle results in less branched glycogen. Biochem Biophys Res Commun 305, 826 – 830.en_US
dc.identifier.citedreferenceTagliabracci VS, Girard JM, Segvich D, Meyer C, Turnbull J, Zhao X, Minassian BA, Depaoli‐Roach AA & Roach PJ ( 2008 ) Abnormal metabolism of glycogen phosphate as a cause for Lafora disease. J Biol Chem 283, 33816 – 33825.en_US
dc.identifier.citedreferenceNewton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA et al. ( 2008 ) Ubiquitin chain editing revealed by polyubiquitin linkage‐specific antibodies. Cell 134, 668 – 678.en_US
dc.identifier.citedreferenceAguado C, Sarkar S, Korolchuk VI, Criado O, Vernia S, Boya P, Sanz P, de Cordoba SR, Knecht E & Rubinsztein DC ( 2010 ) Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Hum Mol Genet 19, 2867 – 2876.en_US
dc.identifier.citedreferenceDePaoli‐Roach AA, Tagliabracci VS, Segvich DM, Meyer CM, Irimia JM & Roach PJ ( 2010 ) Genetic depletion of the malin E3 ubiquitin ligase in mice leads to Lafora bodies and the accumulation of insoluble laforin. J Biol Chem 285, 25372 – 25381.en_US
dc.identifier.citedreferenceTurnbull J, Wang P, Girard JM, Ruggieri A, Wang TJ, Draginov AG, Kameka AP, Pencea N, Zhao X, Ackerley CA et al. ( 2010 ) Glycogen hyperphosphorylation underlies lafora body formation. Ann Neurol 68, 925 – 933.en_US
dc.identifier.citedreferenceValles‐Ortega J, Duran J, Garcia‐Rocha M, Bosch C, Saez I, Pujadas L, Serafin A, Canas X, Soriano E, Delgado‐Garcia JM et al. ( 2011 ) Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease. EMBO Mol Med.en_US
dc.identifier.citedreferenceInoue M, Yagishita S, Itoh Y, Amano N & Matsushita M ( 1996 ) Coexistence of paired helical filaments and polyglucosan bodies in the same neuron in an autopsy case of Alzheimer’s disease. Acta Neuropathol 92, 511 – 514.en_US
dc.identifier.citedreferenceAbubakr A, Wambacq I, Donahue JE & Zappulla R ( 2005 ) The presence of polyglucosan bodies in temporal lobe epilepsy: its role and significance. J Clin Neurosci 12, 911 – 914.en_US
dc.identifier.citedreferenceGanesh S, Agarwala KL, Ueda K, Akagi T, Shoda K, Usui T, Hashikawa T, Osada H, Delgado‐Escueta AV & Yamakawa K ( 2000 ) Laforin, defective in the progressive myoclonus epilepsy of Lafora type, is a dual‐specificity phosphatase associated with polyribosomes. Hum Mol Genet 9, 2251 – 2261.en_US
dc.identifier.citedreferenceGanesh S, Agarwala KL, Amano K, Suzuki T, Delgado‐Escueta AV & Yamakawa K ( 2001 ) Regional and developmental expression of Epm2a gene and its evolutionary conservation. Biochem Biophys Res Commun 283, 1046 – 1053.en_US
dc.identifier.citedreferenceMinassian BA, Lee JR, Herbrick JA, Huizenga J, Soder S, Mungall AJ, Dunham I, Gardner R, Fong CY, Carpenter S et al. ( 1998 ) Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat Genet 20, 171 – 174.en_US
dc.identifier.citedreferenceGambetti P, Di Mauro S, Hirt L & Blume RP ( 1971 ) Myoclonic epilepsy with lafora bodies. Some ultrastructural, histochemical, and biochemical aspects. Arch Neurol 25, 483 – 493.en_US
dc.identifier.citedreferenceSakai M, Austin J, Witmer F & Trueb L ( 1970 ) Studies in myoclonus epilepsy (Lafora body form). II. Polyglucosans in the systemic deposits of myoclonus epilepsy and in corpora amylacea. Neurology 20, 160 – 176.en_US
dc.identifier.citedreferenceCavanagh JB ( 1999 ) Corpora‐amylacea and the family of polyglucosan diseases. Brain Res Brain Res Rev 29, 265 – 295.en_US
dc.identifier.citedreferenceChan EM, Young EJ, Ianzano L, Munteanu I, Zhao X, Christopoulos CC, Avanzini G, Elia M, Ackerley CA, Jovic NJ et al. ( 2003 ) Mutations in NHLRC1 cause progressive myoclonus epilepsy. Nat Genet 35, 125 – 127.en_US
dc.identifier.citedreferenceChan EM, Omer S, Ahmed M, Bridges LR, Bennett C, Scherer SW & Minassian BA ( 2004 ) Progressive myoclonus epilepsy with polyglucosans (Lafora disease): evidence for a third locus. Neurology 63, 565 – 567.en_US
dc.identifier.citedreferenceGanesh S, Delgado‐Escueta AV, Sakamoto T, Avila MR, Machado‐Salas J, Hoshii Y, Akagi T, Gomi H, Suzuki T, Amano K et al. ( 2002 ) Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Hum Mol Genet 11, 1251 – 1262.en_US
dc.identifier.citedreferenceValles‐Ortega J, Duran J, Garcia‐Rocha M, Bosch C, Saez I, Pujadas L, Serafin A, Canas X, Soriano E, Delgado‐Garcia JM et al. ( 2011 ) Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease. EMBO Mol Med 3, 667 – 681.en_US
dc.identifier.citedreferenceDepaoli‐Roach AA, Segvich DM, Meyer CM, Rahimi Y, Worby CA, Gentry MS & Roach PJ ( 2012 ) Laforin and malin knockout mice have normal glucose disposal and insulin sensitivity. Hum Mol Genet 21, 1604 – 1610.en_US
dc.identifier.citedreferenceGanesh S, Tsurutani N, Suzuki T, Hoshii Y, Ishihara T, Delgado‐Escueta AV & Yamakawa K ( 2004 ) The carbohydrate‐binding domain of Lafora disease protein targets Lafora polyglucosan bodies. Biochem Biophys Res Commun 313, 1101 – 1109.en_US
dc.identifier.citedreferenceWang J, Stuckey JA, Wishart MJ & Dixon JE ( 2002 ) A unique carbohydrate binding domain targets the Lafora disease phosphatase to glycogen. J Biol Chem 277, 2377 – 2380.en_US
dc.identifier.citedreferenceGanesh S, Puri R, Singh S, Mittal S & Dubey D ( 2006 ) Recent advances in the molecular basis of Lafora’s progressive myoclonus epilepsy. J Hum Genet 51, 1 – 8.en_US
dc.identifier.citedreferenceChan EM, Ackerley CA, Lohi H, Ianzano L, Cortez MA, Shannon P, Scherer SW & Minassian BA ( 2004 ) Laforin preferentially binds the neurotoxic starch‐like polyglucosans, which form in its absence in progressive myoclonus epilepsy. Hum Mol Genet 13, 1117 – 1129.en_US
dc.identifier.citedreferenceLiu Y, Wang Y, Wu C, Liu Y & Zheng P ( 2006 ) Dimerization of Laforin is required for its optimal phosphatase activity, regulation of GSK3beta phosphorylation, and Wnt signaling. J Biol Chem 281, 34768 – 34774.en_US
dc.identifier.citedreferenceSlack FJ & Ruvkun G ( 1998 ) A novel repeat domain that is often associated with RING finger and B‐box motifs. Trends Biochem Sci 23, 474 – 475.en_US
dc.identifier.citedreferenceGentry MS, Worby CA & Dixon JE ( 2005 ) Insights into Lafora disease: malin is an E3 ubiquitin ligase that ubiquitinates and promotes the degradation of laforin. Proc Natl Acad Sci USA 102, 8501 – 8506.en_US
dc.identifier.citedreferenceLohi H, Ianzano L, Zhao XC, Chan EM, Turnbull J, Scherer SW, Ackerley CA & Minassian BA ( 2005 ) Novel glycogen synthase kinase 3 and ubiquitination pathways in progressive myoclonus epilepsy. Hum Mol Genet 14, 2727 – 2736.en_US
dc.identifier.citedreferenceVilchez D, Ros S, Cifuentes D, Pujadas L, Valles J, Garcia‐Fojeda B, Criado‐Garcia O, Fernandez‐Sanchez E, Medrano‐Fernandez I, Dominguez J et al. ( 2007 ) Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci 10, 1407 – 1413.en_US
dc.identifier.citedreferencePrinten JA, Brady MJ & Saltiel AR ( 1997 ) PTG, a protein phosphatase 1‐binding protein with a role in glycogen metabolism. Science 275, 1475 – 1478.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.