Show simple item record

Activity of the tetrapyrrole regulator CrtJ is controlled by oxidation of a redox active cysteine located in the DNA binding domain

dc.contributor.authorCheng, Zhuoen_US
dc.contributor.authorWu, Jiangen_US
dc.contributor.authorSetterdahl, Aaronen_US
dc.contributor.authorReddie, Khalilahen_US
dc.contributor.authorCarroll, Kateen_US
dc.contributor.authorHammad, Loubna A.en_US
dc.contributor.authorKarty, Jonathan A.en_US
dc.contributor.authorBauer, Carl E.en_US
dc.date.accessioned2012-08-09T14:55:09Z
dc.date.available2013-10-01T17:06:31Zen_US
dc.date.issued2012-08en_US
dc.identifier.citationCheng, Zhuo; Wu, Jiang; Setterdahl, Aaron; Reddie, Khalilah; Carroll, Kate; Hammad, Loubna A.; Karty, Jonathan A.; Bauer, Carl E. (2012). "Activity of the tetrapyrrole regulator CrtJ is controlled by oxidation of a redox active cysteine located in the DNA binding domain." Molecular Microbiology 85(4). <http://hdl.handle.net/2027.42/92379>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92379
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleActivity of the tetrapyrrole regulator CrtJ is controlled by oxidation of a redox active cysteine located in the DNA binding domainen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumLife Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherChemistry, Indiana University, Bloomington, IN 47405, USAen_US
dc.contributor.affiliationotherDepartments of Molecular and Cellular Biochemistryen_US
dc.contributor.affiliationotherDepartment of Chemistry, The Scripps Research Institute, Florida Campus, Jupiter, FL 33458, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92379/1/j.1365-2958.2012.08135.x.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92379/2/MMI_8135_sm_fS1-S6,tS1.pdf
dc.identifier.doi10.1111/j.1365-2958.2012.08135.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferencePenfold, R.J., and Pemberton, J.M. ( 1991 ) A gene from the photosynthetic gene cluster of Rhodobacter Sphaeroides Induces Trans suppression of bacteriochlorophyll and carotenoid levels in R. Sphaeroides and R. Capsulatus. Curr Microbiol 23: 259 – 263.en_US
dc.identifier.citedreferenceDong, C., Elsen, S., Swem, L.R., and Bauer, C.E. ( 2002 ) AerR, a second aerobic repressor of photosynthesis gene expression in Rhodobacter capsulatus. J Bacteriol 184: 2805 – 2814.en_US
dc.identifier.citedreferenceEllis, H.R., and Poole, L.B. ( 1997 ) Novel application of 7‐chloro‐4‐nitrobenzo‐2‐oxa‐1,3‐diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase. Biochemistry 36: 15013 – 15018.en_US
dc.identifier.citedreferenceElsen, S., Ponnampalam, S.N., and Bauer, C.E. ( 1998 ) CrtJ bound to distant binding sites interacts cooperatively to aerobically repress photopigment biosynthesis and light harvesting II gene expression in Rhodobacter capsulatus. J Biol Chem 273: 30762 – 30769.en_US
dc.identifier.citedreferenceFuangthong, M., and Helmann, J.D. ( 2002 ) The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine‐sulfenic acid derivative. Proc Natl Acad Sci USA 99: 6690 – 6695.en_US
dc.identifier.citedreferenceHong, M., Fuangthong, M., Helmann, J.D., and Brennan, R.G. ( 2005 ) Structure of an OhrR‐ohrA operator complex reveals the DNA binding mechanism of the MarR family. Mol Cell 20: 131 – 141.en_US
dc.identifier.citedreferenceHunt, D.F., Yates, J.R., 3rd, Shabanowitz, J., Winston, S., and Hauer, C.R. ( 1986 ) Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci USA 83: 6233 – 6237.en_US
dc.identifier.citedreferenceImhoff, J.F., Truper, H.G., and Pfennig, N. ( 1984 ) Rearrangement of the species and genera of the phototrophic ‘purple nonsulfur bacteria’. Int J Syst Bacteriol 34: 340 – 343.en_US
dc.identifier.citedreferenceJaubert, M., Zappa, S., Fardoux, J., Adriano, J.M., Hannibal, L., Elsen, S., et al. ( 2004 ) Light and redox control of photosynthesis gene expression in Bradyrhizobium: dual roles of two PpsR. J Biol Chem 279: 44407 – 44416.en_US
dc.identifier.citedreferenceKim, S.O., Merchant, K., Nudelman, R., Beyer, W.F., Jr, Keng, T., DeAngelo, J., et al. ( 2002 ) OxyR: a molecular code for redox‐related signaling. Cell 109: 383 – 396.en_US
dc.identifier.citedreferenceKovacs, A.T., Rakhely, G., and Kovacs, K.L. ( 2005 ) The PpsR regulator family. Res Microbiol 156: 619 – 625.en_US
dc.identifier.citedreferenceKullik, I., Toledano, M.B., Tartaglia, L.A., and Storz, G. ( 1995 ) Mutational analysis of the redox‐sensitive transcriptional regulator OxyR: regions important for oxidation and transcriptional activation. J Bacteriol 177: 1275 – 1284.en_US
dc.identifier.citedreferenceLeonard, S.E., Reddie, K.G., and Carroll, K.S. ( 2009 ) Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol 4: 783 – 799.en_US
dc.identifier.citedreferenceLin, W.S., Armstrong, D.A., and Gaucher, G.M. ( 1975 ) Formation and repair of papain sulfenic acid. Can J Biochem 53: 298 – 307.en_US
dc.identifier.citedreferenceMasuda, S., Dong, C., Swem, D., Setterdahl, A.T., Knaff, D.B., and Bauer, C.E. ( 2002 ) Repression of photosynthesis gene expression by formation of a disulfide bond in CrtJ. Proc Natl Acad Sci USA 99: 7078 – 7083.en_US
dc.identifier.citedreferencePaulsen, C.E., and Carroll, K.S. ( 2009 ) Chemical dissection of an essential redox switch in yeast. Chem Biol 16: 217 – 225.en_US
dc.identifier.citedreferencePonnampalam, S.N., and Bauer, C.E. ( 1997 ) DNA binding characteristics of CrtJ. A redox‐responding repressor of bacteriochlorophyll, carotenoid, and light harvesting‐II gene expression in Rhodobacter capsulatus. J Biol Chem 272: 18391 – 18396.en_US
dc.identifier.citedreferencePonnampalam, S.N., Buggy, J.J., and Bauer, C.E. ( 1995 ) Characterization of an aerobic repressor that coordinately regulates bacteriochlorophyll, carotenoid, and light harvesting‐II expression in Rhodobacter capsulatus. J Bacteriol 177: 2990 – 2997.en_US
dc.identifier.citedreferencePoor, C.B., Chen, P.R., Duguid, E., Rice, P.A., and He, C. ( 2009 ) Crystal structures of the reduced, sulfenic acid, and mixed disulfide forms of SarZ, a redox active global regulator in Staphylococcus aureus. J Biol Chem 284: 23517 – 23524.en_US
dc.identifier.citedreferenceReddie, K.G., and Carroll, K.S. ( 2008 ) Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol 12: 746 – 754.en_US
dc.identifier.citedreferenceReddie, K.G., Seo, Y.H., Muse Iii, W.B., Leonard, S.E., and Carroll, K.S. ( 2008 ) A chemical approach for detecting sulfenic acid‐modified proteins in living cells. Mol Biosyst 4: 521 – 531.en_US
dc.identifier.citedreferenceSaurin, A.T., Neubert, H., Brennan, J.P., and Eaton, P. ( 2004 ) Widespread sulfenic acid formation in tissues in response to hydrogen peroxide. Proc Natl Acad Sci USA 101: 17982 – 17987.en_US
dc.identifier.citedreferenceSoonsanga, S., Lee, J.W., and Helmann, J.D. ( 2008 ) Oxidant‐dependent switching between reversible and sacrificial oxidation pathways for Bacillus subtilis OhrR. Mol Microbiol 68: 978 – 986.en_US
dc.identifier.citedreferenceTorchinsky, Y.M. ( 1981 ) Properties of SH groups. Sulfhydryl reagents. In Sulfur in Proteins. Torchinsky, Y.M. (ed.). Oxford: Pergamon, p. 53.en_US
dc.identifier.citedreferenceTurell, L., Botti, H., Carballal, S., Ferrer‐Sueta, G., Souza, J.M., Duran, R., et al. ( 2008 ) Reactivity of sulfenic acid in human serum albumin. Biochemistry 47: 358 – 367.en_US
dc.identifier.citedreferenceZheng, M., Aslund, F., and Storz, G. ( 1998 ) Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279: 1718 – 1721.en_US
dc.identifier.citedreferenceBauer, C.E. ( 2001 ) Regulating synthesis of the purple bacterial photosystem. In Regulation of Photosynthesis. Aro, E., and Andersson, B. (eds). Dodrecht: Kluwer Academic Press, pp. 67 – 83.en_US
dc.identifier.citedreferenceBauer, C.E., and Bird, T.H. ( 1996 ) Regulatory circuits controlling photosynthesis gene expression. Cell 85: 5 – 8.en_US
dc.identifier.citedreferenceBirkett, D.J., Price, N.C., Radda, G.K., and Salmon, A.G. ( 1970 ) The reactivity of SH groups with a fluorogenic reagent. FEBS Lett 6: 346 – 348.en_US
dc.identifier.citedreferenceBoyer, P.D. ( 1954 ) Spectrophotometric study of the reaction of protein sulfhydryl groups with organic mercurials. J Am Chem Soc 76: 4331 – 4337.en_US
dc.identifier.citedreferenceCarballal, S., Radi, R., Kirk, M.C., Barnes, S., Freeman, B.A., and Alvarez, B. ( 2003 ) Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite. Biochemistry 42: 9906 – 9914.en_US
dc.identifier.citedreferenceCharles, R.L., Schroder, E., May, G., Free, P., Gaffney, P.R., Wait, R., et al. ( 2007 ) Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue. Mol Cell Proteomics 6: 1473 – 1484.en_US
dc.identifier.citedreferenceCohen‐Bazire, G., Sistrom, W.R., and Stanier, R.Y. ( 1957 ) Kinetic studies of pigment synthesis by non‐sulfur purple bacteria. J Cell Physiol 49: 25 – 68.en_US
dc.identifier.citedreferenceDenu, J.M., and Tanner, K.G. ( 1998 ) Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37: 5633 – 5642.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.