Show simple item record

Neuron–astrocyte signaling network in spinal cord dorsal horn mediates painful neuropathy of type 2 diabetes

dc.contributor.authorDauch, Jacqueline R.en_US
dc.contributor.authorYanik, Brandon M.en_US
dc.contributor.authorHsieh, Wilsonen_US
dc.contributor.authorOh, Sang Suen_US
dc.contributor.authorCheng, Hsinlin T.en_US
dc.date.accessioned2012-08-09T14:55:50Z
dc.date.available2013-10-18T17:47:30Zen_US
dc.date.issued2012-09en_US
dc.identifier.citationDauch, Jacqueline R.; Yanik, Brandon M.; Hsieh, Wilson; Oh, Sang Su; Cheng, Hsinlin T. (2012). "Neuron–astrocyte signaling network in spinal cord dorsal horn mediates painful neuropathy of type 2 diabetes." Glia 60(9): 1301-1315. <http://hdl.handle.net/2027.42/92403>en_US
dc.identifier.issn0894-1491en_US
dc.identifier.issn1098-1136en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92403
dc.description.abstractActivation of the neuronal–glial network in the spinal cord dorsal horn (SCDH) mediates various chronic painful conditions. We studied spinal neuronal–astrocyte signaling interactions involved in the maintenance of painful diabetic neuropathy (PDN) in type 2 diabetes. We used the db/db mouse, an animal model for PDN of type 2 diabetes, which develops mechanical allodynia from 6 to 12 wk of age. In this study, enhanced substance P expression was detected in the presynaptic sensory fibers innervating lamina I–III in the lumbar SCDH (LSCDH) of the db/db mouse at 10 wk of age. This phenomenon is associated with enhanced spinal ERK1/2 phosphorylation in projection sensory neurons and regional astrocyte activation. In addition, peak phosphorylation of the NR1 subunit of N ‐methyl‐ D ‐aspartate receptor (NMDAR), along with upregulation of neuronal and inducible nitric oxide synthase (nNOS and iNOS) expression were detected in diabetic mice. Expression of nNOS and iNOS was detected in both interneurons and astrocytes in lamina I–III of the LSCDH. Treatment with MK801, an NMDAR inhibitor, inhibited mechanical allodynia, ERK1/2 phosphorylation, and nNOS and iNOS upregulation in diabetic mice. MK801 also reduced astrocytosis and glial acidic fibrillary protein upregulation in db/db mice. In addition, N(G)‐nitro‐L‐arginine methyl ester (L‐NAME), a nonspecific NOS inhibitor, had similar effects on NMDAR signaling and NOS expression. These results suggest that nitric oxide from surrounding interneurons and astrocytes interacts with NMDAR‐dependent signaling in the projection neurons of the SCDH during the maintenance of PDN. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherNitric Oxide Synthaseen_US
dc.subject.otherExtracellular Signal‐Regulated Kinaseen_US
dc.subject.otherNeuropathic Painen_US
dc.subject.otherNeuron–Glial Interactionsen_US
dc.subject.otherN ‐Methyl‐ D ‐Aspartate Receptoren_US
dc.titleNeuron–astrocyte signaling network in spinal cord dorsal horn mediates painful neuropathy of type 2 diabetesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Neurology, University of Michigan, 109 Zina Pitcher Place, 5015 BSRB, Ann Arbor, Michigan 48109‐2200en_US
dc.contributor.affiliationumDepartment of Neurology, University of Michigan Medical Center, Ann Arbor, Michiganen_US
dc.identifier.pmid22573263en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92403/1/22349_ftp.pdf
dc.identifier.doi10.1002/glia.22349en_US
dc.identifier.sourceGliaen_US
dc.identifier.citedreferencePersson J, Axelsson G, Hallin RG, Gustafsson LL. 1995. Beneficial effects of ketamine in a chronic pain state with allodynia, possibly due to central sensitization. Pain 60: 217 – 222.en_US
dc.identifier.citedreferenceInoue T, Mashimo T, Shibata M, Shibuta S, Yoshiya I. 1998. Rapid development of nitric oxide‐induced hyperalgesia depends on an alternate to the cGMP‐mediated pathway in the rat neuropathic pain model. Brain Res 792: 263 – 270.en_US
dc.identifier.citedreferenceJander S, Schroeter M, Stoll G. 2000. Role of NMDA receptor signaling in the regulation of inflammatory gene expression after focal brain ischemia. J Neuroimmunol 109: 181 – 187.en_US
dc.identifier.citedreferenceJi RR, Baba H, Brenner GJ, Woolf CJ. 1999. Nociceptive‐specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci 2: 1114 – 1119.en_US
dc.identifier.citedreferenceJi RR, Befort K, Brenner GJ, Woolf CJ. 2002. ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK‐1 upregulation and contributes to persistent inflammatory pain hypersensitivity. J Neurosci 22: 478 – 485.en_US
dc.identifier.citedreferenceJi RR, Gereau RWT, Malcangio M, Strichartz GR. 2009. MAP kinase and pain. Brain Res Rev 60: 135 – 148.en_US
dc.identifier.citedreferenceKawasaki Y, Kohno T, Zhuang ZY, Brenner GJ, Wang H, Van Der Meer C, Befort K, Woolf CJ, Ji RR. 2004. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C‐fiber‐induced ERK activation and cAMP response element‐binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J Neurosci 24: 8310 – 8321.en_US
dc.identifier.citedreferenceKitto KF, Haley JE, Wilcox GL. 1992. Involvement of nitric oxide in spinally mediated hyperalgesia in the mouse. Neurosci Lett 148: 1 – 5.en_US
dc.identifier.citedreferenceKomatsu T, Sakurada S, Kohno K, Shiohira H, Katsuyama S, Sakurada C, Tsuzuki M, Sakurada T. 2009. Spinal ERK activation via NO‐cGMP pathway contributes to nociceptive behavior induced by morphine‐3‐glucuronide. Biochem Pharmacol 78: 1026 – 1034.en_US
dc.identifier.citedreferenceLatremoliere A, Woolf CJ. 2009. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J Pain 10: 895 – 926.en_US
dc.identifier.citedreferenceLever IJ, Pezet S, McMahon SB, Malcangio M. 2003. The signaling components of sensory fiber transmission involved in the activation of ERK MAP kinase in the mouse dorsal horn. Mol Cell Neurosci 24: 259 – 270.en_US
dc.identifier.citedreferenceLiao YH, Zhang GH, Jia D, Wang P, Qian NS, He F, Zeng XT, He Y, Yang YL, Cao DY, Zhang Y, Wang DS, Tao KS, Gao CJ, Dou KF. 2011. Spinal astrocytic activation contributes to mechanical allodynia in a mouse model of type 2 diabetes. Brain Res 1368: 324 – 335.en_US
dc.identifier.citedreferenceMalmberg AB, Yaksh TL. 1993. Spinal nitric oxide synthesis inhibition blocks NMDA‐induced thermal hyperalgesia and produces antinociception in the formalin test in rats. Pain 54: 291 – 300.en_US
dc.identifier.citedreferenceMao J, Price DD, Mayer DJ, Lu J, Hayes RL. 1992. Intrathecal MK‐801 and local nerve anesthesia synergistically reduce nociceptive behaviors in rats with experimental peripheral mononeuropathy. Brain Res 576: 254 – 262.en_US
dc.identifier.citedreferenceMeller ST, Cummings CP, Traub RJ, Gebhart GF. 1994. The role of nitric oxide in the development and maintenance of the hyperalgesia produced by intraplantar injection of carrageenan in the rat. Neuroscience 60: 367 – 374.en_US
dc.identifier.citedreferenceObata K, Yamanaka H, Kobayashi K, Dai Y, Mizushima T, Katsura H, Fukuoka T, Tokunaga A, Noguchi K. 2004. Role of mitogen‐activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. J Neurosci 24: 10211 – 10222.en_US
dc.identifier.citedreferenceObata K, Katsura H, Mizushima T, Sakurai J, Kobayashi K, Yamanaka H, Dai Y, Fukuoka T, Noguchi K. 2007. Roles of extracellular signal‐regulated protein kinases 5 in spinal microglia and primary sensory neurons for neuropathic pain. J Neurochem 102: 1569 – 1584.en_US
dc.identifier.citedreferenceRen K, Hylden JL, Williams GM, Ruda MA, Dubner R. 1992. The effects of a non‐competitive NMDA receptor antagonist, MK‐801, on behavioral hyperalgesia and dorsal horn neuronal activity in rats with unilateral inflammation. Pain 50: 331 – 344.en_US
dc.identifier.citedreferenceRondon LJ, Privat AM, Daulhac L, Davin N, Mazur A, Fialip J, Eschalier A, Courteix C. 2010. Magnesium attenuates chronic hypersensitivity and spinal cord NMDA receptor phosphorylation in a rat model of diabetic neuropathic pain. J Physiol 588 ( Pt 21 ): 4205 – 4215.en_US
dc.identifier.citedreferenceRuscheweyh R, Goralczyk A, Wunderbaldinger G, Schober A, Sandkuhler J. 2006. Possible sources and sites of action of the nitric oxide involved in synaptic plasticity at spinal lamina I projection neurons. Neuroscience 141: 977 – 988.en_US
dc.identifier.citedreferenceSlack SE, Grist J, Mac Q, McMahon SB, Pezet S. 2005. TrkB expression and phospho‐ERK activation by brain‐derived neurotrophic factor in rat spinothalamic tract neurons. J Comp Neurol 489: 59 – 68.en_US
dc.identifier.citedreferenceSorkin LS. 1993. NMDA evokes an L‐NAME sensitive spinal release of glutamate and citrulline. Neuroreport 4: 479 – 482.en_US
dc.identifier.citedreferenceSullivan KA, Hayes JM, Wiggin TD, Backus C, Su Oh S, Lentz SI, Brosius F III, Feldman EL. 2007. Mouse models of diabetic neuropathy. Neurobiol Dis 28: 276 – 285.en_US
dc.identifier.citedreferenceThomas DA, Ren K, Besse D, Ruda MA, Dubner R. 1996. Application of nitric oxide synthase inhibitor, N omega‐nitro‐ L ‐arginine methyl ester, on injured nerve attenuates neuropathy‐induced thermal hyperalgesia in rats. Neurosci Lett 210: 124 – 126.en_US
dc.identifier.citedreferenceVareniuk I, Pacher P, Pavlov IA, Drel VR, Obrosova IG. 2009. Peripheral neuropathy in mice with neuronal nitric oxide synthase gene deficiency. Int J Mol Med 23: 571 – 580.en_US
dc.identifier.citedreferenceWong CS, Hsu MM, Chou YY, Tao PL, Tung CS. 2000. Morphine tolerance increases [3H]MK‐801 binding affinity and constitutive neuronal nitric oxide synthase expression in rat spinal cord. Br J Anaesth 85: 587 – 591.en_US
dc.identifier.citedreferenceWoolf CJ. 2007. Central sensitization: Uncovering the relation between pain and plasticity. Anesthesiology 106: 864 – 867.en_US
dc.identifier.citedreferenceZajac JM, Latapie JP, Frances B. 2000. Opposing interplay between Neuropeptide FF and nitric oxide in antinociception and hypothermia. Peptides 21: 1209 – 1213.en_US
dc.identifier.citedreferenceAmitai Y. 2010. Physiologic role for “inducible” nitric oxide synthase: A new form of astrocytic‐neuronal interface. Glia 58: 1775 – 1781.en_US
dc.identifier.citedreferenceBarrett AM, Lucero MA, Le T, Robinson RL, Dworkin RH, Chappell AS. 2007. Epidemiology, public health burden, and treatment of diabetic peripheral neuropathic pain: A review. Pain Med 8 ( Suppl 2 ): S50 – S62.en_US
dc.identifier.citedreferenceBeggs S, Salter MW. 2010. Microglia‐neuronal signalling in neuropathic pain hypersensitivity 2.0. Curr Opin Neurobiol 20: 474 – 480.en_US
dc.identifier.citedreferenceBoulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. 2005. Diabetic neuropathies: A statement by the American Diabetes Association. Diabetes Care 28: 956 – 962.en_US
dc.identifier.citedreferenceBujalska M, Tatarkiewicz J, de Corde A, Gumulka SW. 2008. Effect of cyclooxygenase and nitric oxide synthase inhibitors on streptozotocin‐induced hyperalgesia in rats. Pharmacology 81: 151 – 157.en_US
dc.identifier.citedreferenceCalcina F, Barocelli E, Bertoni S, Furukawa O, Kaunitz J, Impicciatore M, Sternini C. 2005. Effect of N ‐methyl‐ D ‐aspartate receptor blockade on neuronal plasticity and gastrointestinal transit delay induced by ischemia/reperfusion in rats. Neuroscience 134: 39 – 49.en_US
dc.identifier.citedreferenceChaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. 1994. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53: 55 – 63.en_US
dc.identifier.citedreferenceCheng HT, Suzuki M, Hegarty DM, Xu Q, Weyerbacher AR, South SM, Ohata M, Inturrisi CE. 2008. Inflammatory pain‐induced signaling events following a conditional deletion of the N ‐methyl‐ D ‐aspartate receptor in spinal cord dorsal horn. Neuroscience 155: 948 – 958.en_US
dc.identifier.citedreferenceCheng HT, Dauch JR, Hayes JM, Hong Y, Feldman EL. 2009. Nerve growth factor mediates mechanical allodynia in a mouse model of type 2 diabetes. J Neuropathol Exp Neurol 68: 1229 – 1243.en_US
dc.identifier.citedreferenceCheng HT, Dauch JR, Oh SS, Hayes JM, Hong Y, Feldman EL. 2010. p38 mediates mechanical allodynia in a mouse model of type 2 diabetes. Mol Pain 6: 28.en_US
dc.identifier.citedreferenceDaulhac L, Mallet C, Courteix C, Etienne M, Duroux E, Privat AM, Eschalier A, Fialip J. 2006. Diabetes‐induced mechanical hyperalgesia involves spinal mitogen‐activated protein kinase activation in neurons and microglia via N ‐methyl‐ D ‐aspartate‐dependent mechanisms. Mol Pharmacol 70: 1246 – 1254.en_US
dc.identifier.citedreferenceDavies M, Brophy S, Williams R, Taylor A. 2006. The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes. Diabetes Care 29: 1518 – 1522.en_US
dc.identifier.citedreferenceDixon WJ. 1980. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20: 441 – 462.en_US
dc.identifier.citedreferenceEsposito E, Paterniti I, Mazzon E, Genovese T, Galuppo M, Meli R, Bramanti P, Cuzzocrea S. 2011. MK801 attenuates secondary injury in a mouse experimental compression model of spinal cord trauma. BMC Neurosci 12: 31.en_US
dc.identifier.citedreferenceFeldman EL, Stevens MJ, Russell JW, Peltier A, Inzucchi S, Porte JD, Sherwin RS, Baron A. 2005. Somatosensory neuropathy. The diabetes mellitus manual. New York: McGraw‐Hill. pp 366 – 384.en_US
dc.identifier.citedreferenceFreire MA, Guimaraes JS, Leal WG, Pereira A. 2009. Pain modulation by nitric oxide in the spinal cord. Front Neurosci 3: 175 – 181.en_US
dc.identifier.citedreferenceGao YJ, Ji RR. 2010a. Light touch induces ERK activation in superficial dorsal horn neurons after inflammation: Involvement of spinal astrocytes and JNK signaling in touch‐evoked central sensitization and mechanical allodynia. J Neurochem 115: 505 – 514.en_US
dc.identifier.citedreferenceGao YJ, Ji RR. 2010b. Targeting astrocyte signaling for chronic pain. Neurotherapeutics 7: 482 – 493.en_US
dc.identifier.citedreferenceGwak YS, Kang J, Unabia GC, Hulsebosch CE. 2012. Spatial and temporal activation of spinal glial cells: Role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp Neurol 234: 362 – 372en_US
dc.identifier.citedreferenceHummel KP, Dickie MM, Coleman DL. 1966. Diabetes, a new mutation in the mouse. Science 153: 1127 – 1128.en_US
dc.identifier.citedreferenceInfante C, Diaz M, Hernandez A, Constandil L, Pelissier T. 2007. Expression of nitric oxide synthase isoforms in the dorsal horn of monoarthritic rats: Effects of competitive and uncompetitive N ‐methyl‐ D ‐aspartate antagonists. Arthritis Res Ther 9: R53.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.