Show simple item record

Enhanced propagation of adult human renal epithelial progenitor cells to improve cell sourcing for tissue‐engineered therapeutic devices for renal diseases

dc.contributor.authorWestover, Angela J.en_US
dc.contributor.authorBuffington, Deborah A.en_US
dc.contributor.authorHumes, H. D.en_US
dc.date.accessioned2012-08-09T14:55:55Z
dc.date.available2013-10-01T17:06:31Zen_US
dc.date.issued2012-08en_US
dc.identifier.citationWestover, Angela J.; Buffington, Deborah A.; Humes, H. D. (2012). "Enhanced propagation of adult human renal epithelial progenitor cells to improve cell sourcing for tissue‐engineered therapeutic devices for renal diseases." Journal of Tissue Engineering and Regenerative Medicine 6(8): 589-597. <http://hdl.handle.net/2027.42/92407>en_US
dc.identifier.issn1932-6254en_US
dc.identifier.issn1932-7005en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92407
dc.description.abstractRenal cell therapy employing cells derived from adult renal epithelial cell (REC) progenitors promises to reduce the morbidity of patients with renal insufficiency due to acute renal failure and end stage renal disease. To this end, tissue engineered devices addressing the neglected biologic component of renal replacement therapy are being developed. Because human donor tissue is limited, novel enhanced progenitor cell propagation (EP) techniques have been developed and applied to adult human kidney transplant discards from six donors. Changes include more efficient digestion and the amplification of progenitors prior to terminal epithelial differentiation promoted by contact inhibition and the addition of retinoic acid. Differentiated morphology in EP populations was demonstrated by the ability to form polarized epithelium with tight junctions, apical central cilia and expression of brush border membrane enzymes. Evaluation of lipopolysaccharide stimulated interleukin‐8 secretion and γ –glutamyl transpeptisade activity in EP derived cells was used to confirm therapeutic equivalence to REC obtained using published techniques, which have previously shown efficacy in large animal models and clinical trials. Yield exceeded 10 16 cells/gram cortex from the only kidney obtained due to an anatomical defect, while the average yield from diseased kidneys ranged from 1.1×10 9 to 8.8×10 11 cells/gram cortex, representing an increase of more than 10 doublings over standard methods. Application of the EP protocol to REC expansion has solved the problem of cell sourcing as the limiting factor to the manufacture of cell based therapies targeting renal diseases and may provide a method for autologous device fabrication from core kidney biopsies. Copyright © 2012 John Wiley & Sons, Ltd.en_US
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherTissue Engineeringen_US
dc.subject.otherRenal Insufficiencyen_US
dc.subject.otherTissue Expansionen_US
dc.subject.otherAdult Stem Cellsen_US
dc.subject.otherKidneyen_US
dc.titleEnhanced propagation of adult human renal epithelial progenitor cells to improve cell sourcing for tissue‐engineered therapeutic devices for renal diseasesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22674876en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92407/1/term471.pdf
dc.identifier.doi10.1002/term.471en_US
dc.identifier.sourceJournal of Tissue Engineering and Regenerative Medicineen_US
dc.identifier.citedreferenceSmith PL, Buffington DA, Humes HD. 2006; Kidney epithelial cells. Methods Enzymol 419: 194 – 207.en_US
dc.identifier.citedreferenceKale S, Karihaloo A, Clark PR, et al. 2003; Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112 ( 1 ): 42 – 49.en_US
dc.identifier.citedreferenceKrieg AF, Rosenblum LJ, Henry JB. 1967; Lactate dehydrogenase isoenzymes a comparison of pyruvate‐to‐lactate and lactate‐to‐pyruvate assays. Clin Chem 13 ( 3 ): 196 – 203.en_US
dc.identifier.citedreferenceLeonard M, Ryan MP, Watson AJ, et al. 1999; Role of map kinase pathways in mediating IL‐6 production in human primary mesangial and proximal tubular cells. Kidney Int 56 ( 4 ): 1366 – 1377.en_US
dc.identifier.citedreferencePotten CS, Loeffler M. 1990; Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110: 1001 – 1020.en_US
dc.identifier.citedreferencePoulsom R, Forbes SJ, Hodivala‐Dilke K, et al. 2001; Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195 ( 2 ): 229 – 235.en_US
dc.identifier.citedreferenceProdjosudjadi W, Gerritsma JS, Klar‐Mohamad N, et al. 1995; Production and cytokine‐mediated regulation of monocyte chemoattractant protein‐1 by human proximal tubular epithelial cells. Kidney Int 48 ( 5 ): 1477 – 1486.en_US
dc.identifier.citedreferenceSagrinati C, Netti GS, Mazzinghi B, et al. 2006; Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. J Am Soc Nephrol 17 ( 9 ): 2443 – 2456.en_US
dc.identifier.citedreferenceSaxen L. 1987; Organogenesis of the Kidney. Cambridge University Press: New York.en_US
dc.identifier.citedreferenceSchrier RW, Wang W. 2004; Acute renal failure and sepsis. N Engl J Med 351 ( 2 ): 159 – 169.en_US
dc.identifier.citedreferenceSmith AM, Potter M, Merchant EB. 1967; Antibody‐forming cells in the pronephros of the teleost Lepomis macrochirus. J Immunol 99 ( 5 ): 876 – 882.en_US
dc.identifier.citedreferenceSong J, Jung J, Ding F, et al. 2009; Uremic animal model of bioartificial renal cell system (BRECS) using continuous flow peritoneal dialysis‐based extracorporeal circuit. J Am Soc Nephrol 20: 106A.en_US
dc.identifier.citedreferenceSzasz G. 1974; Methods of Enzymatic Analysis. Academic Press: New York.en_US
dc.identifier.citedreferenceTumlin J, Wali R, Williams W, et al. 2008; Efficacy and safety of renal tubule cell therapy for acute renal failure. J Am Soc Nephrol 19 ( 5 ): 1034 – 1040.en_US
dc.identifier.citedreferenceTurpen JB, Knudson CM. 1982; Ontogeny of hematopoietic cells in Rana pipiens: precursor cell migration during embryogenesis. Dev Biol 89 ( 1 ): 138 – 151.en_US
dc.identifier.citedreferenceVan Den Hamer CJ, Elias RW. 1958; A method for the determination of d(− )‐lactic acid. Biochim Biophys Acta 29 ( 3 ): 556 – 562.en_US
dc.identifier.citedreferencevan Kooten C, van der Linde X, Woltman AM, et al. 1999; Synergistic effect of interleukin‐1 and CD40l on the activation of human renal tubular epithelial cells. Kidney Int 56 ( 1 ): 41 – 51.en_US
dc.identifier.citedreferenceWahl P, Schoop R, Bilic G, et al. 2002; Renal tubular epithelial expression of the costimulatory molecule b7rp‐1 inducible costimulator ligand. J Am Soc Nephrol 13 ( 6 ): 1517 – 1526.en_US
dc.identifier.citedreferenceWuthrich RP, Glimcher LH, Yui MA, et al. 1990; MHC class ii antigen presentation and tumor necrosis factor in renal tubular epithelial cells. Kidney Int 37 ( 2 ): 783 – 792.en_US
dc.identifier.citedreferenceXue JI, Ma JZ, Louis TA, et al. 2001; Forecast of the number of patients with end‐stage renal disease in the United States to the year 2010. J Am Soc Nephrol 12: 2753 – 2758.en_US
dc.identifier.citedreferenceZapata A. 1979; Ultrastructural study of the teleost fish kidney. Dev Comp Immunol 3 ( 1 ): 55 – 65.en_US
dc.identifier.citedreferenceAl‐Awqati Q, Oliver JA. 2006; The kidney papilla is a stem cells niche. Stem Cell Rev 2 ( 3 ): 181 – 184.en_US
dc.identifier.citedreferenceBates DW, Su L, Yu DT, et al. 2001; Mortality and costs of acute renal failure associated with amphotericin B therapy. Clin Infect Dis 32 ( 5 ): 686 – 693.en_US
dc.identifier.citedreferenceBi B, Schmitt R, Israilova M, et al. 2007; Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 18 ( 9 ): 2486 – 2496.en_US
dc.identifier.citedreferenceBishop GA, Waugh JA, Hall BM. 1988; Expression of HLA antigens on renal tubular cells in culture. Ii. Effect of increased HLA antigen expression on tubular cell stimulation of lymphocyte activation and on their vulnerability to cell‐mediated lysis. Transplantation 46 ( 2 ): 303 – 310.en_US
dc.identifier.citedreferenceBuffington DA, Hageman G, Lou L, et al. 2009; Design of a compact, cryoperservable, bioartificial renal cell system. J Am Soc Nephrol 20: 27A.en_US
dc.identifier.citedreferenceChallen GA, Bertoncello I, Deane JA, et al. 2006; Kidney side population reveals multilineage potential and renal functional capacity but also cellular heterogeneity. J Am Soc Nephrol 17 ( 7 ): 1896 – 1912.en_US
dc.identifier.citedreferenceChertow GM, Levy EM, Hammermeister KE, et al. 1998; Independent association between acute renal and mortality following cardiac surgery. Am J Med 104: 343 – 348.en_US
dc.identifier.citedreferenceCollins AJ, Kasiske B, Herzog C, et al. 2005; Excerpts from the United States Renal Data System 2004 Annual Data Report: atlas of end‐stage renal disease in the United States. Am J Kidney Dis 45 ( 1, suppl 1 ): A5 – 7, S1–280.en_US
dc.identifier.citedreferenceCukor D, Cohen SD, Peterson RA, et al. 2007; Psychosocial aspects of chronic disease: ESRD as a paradigmatic illness. J Am Soc Nephrol 18 ( 12 ): 3042 – 3055.en_US
dc.identifier.citedreferenceDuffield JS, Bonventre JV. 2005; Kidney tubular epithelium is restored without replacement with bone marrow‐derived cells during repair after ischemic injury. Kidney Int 68 ( 5 ): 1956 – 1961.en_US
dc.identifier.citedreferenceGupta S, Verfaillie C, Chmielewski D, et al. 2002; A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int 62 ( 4 ): 1285 – 1290.en_US
dc.identifier.citedreferenceHall PA, Watt FM. 1989; Stem cells): The generation and maintenance of cellular diversity. Development 106 ( 4 ): 619 – 633.en_US
dc.identifier.citedreferenceHumes HD. 1995; Acute renal failure: prevailing challenges and prospects for the future. Kidney Int Suppl 50: S26 – 32.en_US
dc.identifier.citedreferenceHumes HD. 2000; Bioartificial kidney for full renal replacement therapy. Semin Nephrol 20 ( 1 ): 71 – 82.en_US
dc.identifier.citedreferenceHumes HD, Fissell WH, Weitzel WF. 2002; The bioartificial kidney in the treatment of acute renal failure. Kidney Int Suppl 80: 121 – 125.en_US
dc.identifier.citedreferenceHumes HD, Weitzel WF, Bartlett RH, et al. 2003; Renal cell therapy is associated with dynamic and individualized responses in patients with acute renal failure. Blood Purif 21 ( 1 ): 64 – 71.en_US
dc.identifier.citedreferenceIglehart JK. 1993; The American health care system. Teaching hospitals. N Engl J Med 329 ( 14 ): 1052 – 1056.en_US
dc.identifier.citedreferenceImai E, Iwatani H. 2007; The continuing story of renal repair with stem cells. J Am Soc Nephrol 18 ( 9 ): 2423 – 2424.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.