Show simple item record

The conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysis

dc.contributor.authorCunningham, Christian N.en_US
dc.contributor.authorSouthworth, Daniel R.en_US
dc.contributor.authorKrukenberg, Kristin A.en_US
dc.contributor.authorAgard, David A.en_US
dc.date.accessioned2012-08-09T14:56:00Z
dc.date.available2013-10-01T17:06:31Zen_US
dc.date.issued2012-08en_US
dc.identifier.citationCunningham, Christian N.; Southworth, Daniel R.; Krukenberg, Kristin A.; Agard, David A. (2012). "The conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysis." Protein Science 21(8): 1162-1171. <http://hdl.handle.net/2027.42/92411>en_US
dc.identifier.issn0961-8368en_US
dc.identifier.issn1469-896Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/92411
dc.description.abstractHsp90, a dimeric ATP‐dependent molecular chaperone, is required for the folding and activation of numerous essential substrate “client” proteins including nuclear receptors, cell cycle kinases, and telomerase. Fundamental to its mechanism is an ensemble of dramatically different conformational states that result from nucleotide binding and hydrolysis and distinct sets of interdomain interactions. Previous structural and biochemical work identified a conserved arginine residue (R380 in yeast) in the Hsp90 middle domain (MD) that is required for wild type hydrolysis activity in yeast, and hence proposed to be a catalytic residue. As part of our investigations on the origins of species‐specific differences in Hsp90 conformational dynamics we probed the role of this MD arginine in bacterial, yeast, and human Hsp90s using a combination of structural and functional approaches. While the R380A mutation compromised ATPase activity in all three homologs, the impact on ATPase activity was both variable and much more modest (2–7 fold) than the mutation of an active site glutamate (40 fold) known to be required for hydrolysis. Single particle electron microscopy and small‐angle X‐ray scattering revealed that, for all Hsp90s, mutation of this arginine abrogated the ability to form the closed “ATP” conformational state in response to AMPPNP binding. Taken together with previous mutagenesis data exploring intra‐ and intermonomer interactions, these new data suggest that R380 does not directly participate in the hydrolysis reaction as a catalytic residue, but instead acts as an ATP‐sensor to stabilize an NTD‐MD conformation required for efficient ATP hydrolysis.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherHsp90en_US
dc.subject.otherConformational Dynamicsen_US
dc.subject.otherCatalysisen_US
dc.subject.otherInteractionsen_US
dc.subject.otherATP Hydrolysisen_US
dc.titleThe conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biological Chemistry, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109en_US
dc.contributor.affiliationotherDepartment of Systems Biology, Harvard Medical School, 200 Longwood Ave, Warren Alpert 536, Boston, MA 02115en_US
dc.contributor.affiliationotherGraduate Group in Biophysics, University of California, San Francisco, California 94158en_US
dc.contributor.affiliationotherDepartment of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, California 94158en_US
dc.contributor.affiliationotherGraduate Program in Chemistry and Chemical Biology, University of California, San Francisco, California 94158en_US
dc.contributor.affiliationotherEarly Discovery Biochemistry, Genentech, Inc., 1 DNA Way, MS27, South San Francisco, CA 94080en_US
dc.contributor.affiliationother600 16th St., MC2240 Room S412D, San Francisco, CA 94158en_US
dc.identifier.pmid22653663en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/92411/1/2103_ftp.pdf
dc.identifier.doi10.1002/pro.2103en_US
dc.identifier.sourceProtein Scienceen_US
dc.identifier.citedreferenceMotojima‐Miyazaki Y, Yoshida M, Motojima F ( 2010 ) Ribosomal protein L2 associates with E. coli HtpG and activates its ATPase activity. Biochem Biophys Res Commun 400: 241 – 245.en_US
dc.identifier.citedreferenceHawle P, Siepmann M, Harst A, Siderius M, Reusch HP, Obermann WM ( 2006 ) The middle domain of Hsp90 acts as a discriminator between different types of client proteins. Mol Cell Biol 26: 8385 – 8395.en_US
dc.identifier.citedreferenceProdromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH ( 1997 ) Identification and structural characterization of the ATP/ADP‐binding site in the Hsp90 molecular chaperone. Cell 90: 65 – 75.en_US
dc.identifier.citedreferenceHarris SF, Shiau AK, Agard DA ( 2004 ) The crystal structure of the carboxy‐terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 12: 1087 – 1097.en_US
dc.identifier.citedreferenceMeyer P, Prodromou C, Hu B, Vaughan C, Roe SM, Panaretou B, Piper PW, Pearl LH ( 2003 ) Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 11: 647 – 658.en_US
dc.identifier.citedreferenceMeyer P, Prodromou C, Liao C, Hu B, Mark Roe S, Vaughan CK, Vlasic I, Panaretou B, Piper PW, Pearl LH ( 2004 ) Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J 23: 511 – 519.en_US
dc.identifier.citedreferenceDutta R, Inouye M ( 2000 ) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25: 24 – 28.en_US
dc.identifier.citedreferenceProdromou C, Roe SM, Piper PW, Pearl LH ( 1997 ) A molecular clamp in the crystal structure of the N‐terminal domain of the yeast Hsp90 chaperone. Nat Struct Biol 4: 477 – 482.en_US
dc.identifier.citedreferencePanaretou B, Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH ( 1998 ) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17: 4829 – 4836.en_US
dc.identifier.citedreferenceShiau AK, Harris SF, Southworth DR, Agard DA ( 2006 ) Structural analysis of E. coli hsp90 reveals dramatic nucleotide‐dependent conformational rearrangements. Cell 127: 329 – 340.en_US
dc.identifier.citedreferenceAli MM, Roe SM, Vaughan CK, Meyer P, Panaretou B, Piper PW, Prodromou C, Pearl LH ( 2006 ) Crystal structure of an Hsp90‐nucleotide‐p23/Sba1 closed chaperone complex. Nature 440: 1013 – 1017.en_US
dc.identifier.citedreferenceSouthworth DR, Agard DA ( 2008 ) Species‐dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Mol Cell 32: 631 – 640.en_US
dc.identifier.citedreferenceKrukenberg KA, Forster F, Rice LM, Sali A, Agard DA ( 2008 ) Multiple conformations of E. coli Hsp90 in solution: insights into the conformational dynamics of Hsp90. Structure 16: 755 – 765.en_US
dc.identifier.citedreferenceMickler M, Hessling M, Ratzke C, Buchner J, Hugel T ( 2009 ) The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat Struct Mol Biol 16: 281 – 286.en_US
dc.identifier.citedreferenceMcLaughlin SH, Smith HW, Jackson SE ( 2002 ) Stimulation of the weak ATPase activity of human hsp90 by a client protein. J Mol Biol 315: 787 – 798.en_US
dc.identifier.citedreferenceStreet TO, Lavery LA, Agard DA ( 2011 ) Substrate binding drives large‐scale conformational changes in the Hsp90 molecular chaperone. Mol Cell 42: 96 – 105.en_US
dc.identifier.citedreferenceHessling M, Richter K, Buchner J ( 2009 ) Dissection of the ATP‐induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16: 287 – 293.en_US
dc.identifier.citedreferenceBan C, Junop M, Yang W ( 1999 ) Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97: 85 – 97.en_US
dc.identifier.citedreferenceBan C, Yang W ( 1998 ) Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95: 541 – 552.en_US
dc.identifier.citedreferenceCorbett KD, Berger JM ( 2005 ) Structural dissection of ATP turnover in the prototypical GHL ATPase TopoVI. Structure 13: 873 – 882.en_US
dc.identifier.citedreferenceCunningham CN, Krukenberg KA, Agard DA ( 2008 ) Intra‐ and intermonomer interactions are required to synergistically facilitate ATP hydrolysis in Hsp90. J Biol Chem 283: 21170 – 21178.en_US
dc.identifier.citedreferenceMcLaughlin SH, Ventouras LA, Lobbezoo B, Jackson SE ( 2004 ) Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform. J Mol Biol 344: 813 – 826.en_US
dc.identifier.citedreferenceVasko R, Rodriguez R, Cunningham C, Ardi V, Agard D, McAlpine S ( 2010 ) Mechanistic studies of sansalvamide A‐amide: an allosteric modulator of Hsp90. ACS Med Chem Lett 1: 4 – 8.en_US
dc.identifier.citedreferenceAlexander LD, Partridge JR, Agard DA, McAlpine SR ( 2011 ) A small molecule that preferentially binds the closed conformation of Hsp90. Bioorg Med Chem Lett 21: 7068 – 7071.en_US
dc.identifier.citedreferenceDollins DE, Warren JJ, Immormino RM, Gewirth DT ( 2007 ) Structures of GRP94‐nucleotide complexes reveal mechanistic differences between the hsp90 chaperones. Mol Cell 28: 41 – 56.en_US
dc.identifier.citedreferenceHuai Q, Wang H, Liu Y, Kim HY, Toft D, Ke H ( 2005 ) Structures of the N‐terminal and middle domains of E. coli Hsp90 and conformation changes upon ADP binding. Structure 13: 579 – 590.en_US
dc.identifier.citedreferenceSouthworth DR, Agard DA ( 2011 ) Client‐loading conformation of the Hsp90 molecular chaperone revealed in the cryo‐EM structure of the human Hsp90:Hop complex. Mol Cell 42: 771 – 781.en_US
dc.identifier.citedreferenceFelts SJ, Owen BA, Nguyen P, Trepel J, Donner DB, Toft DO ( 2000 ) The hsp90‐related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275: 3305 – 3312.en_US
dc.identifier.citedreferenceKonarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI ( 2003 ) PRIMUS: a Windows PC‐based system for small‐angle scattering data analysis. J Appl Cryst 36: 1277 – 1282.en_US
dc.identifier.citedreferenceOhi M, Li Y, Cheng Y, Walz T ( 2004 ) Negative staining and image classification—powerful tools in modern electron microscopy. Biol Proced Online 6: 23 – 34.en_US
dc.identifier.citedreferenceYoung JC, Agashe VR, Siegers K, Hartl FU ( 2004 ) Pathways of chaperone‐mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5: 781 – 791.en_US
dc.identifier.citedreferenceFreeman BC, Yamamoto KR ( 2002 ) Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296: 2232 – 2235.en_US
dc.identifier.citedreferencePicard D ( 2002 ) Heat‐shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59: 1640 – 1648.en_US
dc.identifier.citedreferencePratt WB, Toft DO ( 2003 ) Regulation of signaling protein function and trafficking by the hsp90/hsp70‐based chaperone machinery. Exp Biol Med 228: 111 – 133.en_US
dc.identifier.citedreferenceRichter K, Muschler P, Hainzl O, Buchner J ( 2001 ) Coordinated ATP hydrolysis by the Hsp90 dimer. J Biol Chem 276: 33689 – 33696.en_US
dc.identifier.citedreferenceYoung JC, Moaerefi I, Hartl FU ( 2001 ) Hsp90: a specialized but essential protein‐folding tool. J Cell Biol 154: 267 – 273.en_US
dc.identifier.citedreferenceZhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry WA ( 2005 ) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120: 715 – 727.en_US
dc.identifier.citedreferenceYoung JC, Hoogenraad NJ, Hartl FU ( 2003 ) Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112: 41 – 50.en_US
dc.identifier.citedreferencePearl LH, Prodromou C ( 2006 ) Structure and mechanism of the hsp90 molecular chaperone machinery. Annu Rev Biochem 75: 271 – 294.en_US
dc.identifier.citedreferenceMcClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J ( 2007 ) Diverse cellular functions of the hsp90 molecular chaperone uncovered using systems approaches. Cell 131: 121 – 135.en_US
dc.identifier.citedreferenceNeckers L, Neckers K ( 2005 ) Heat‐shock protein 90 inhibitors as novel cancer chemotherapeutics—an update. Expert Opin Emerg Drugs 10: 137 – 149.en_US
dc.identifier.citedreferenceSharp S, Workman P ( 2006 ) Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 95: 323 – 348.en_US
dc.identifier.citedreferenceJez JM, Chen JC, Rastelli G, Stroud RM, Santi DV ( 2003 ) Crystal structure and molecular modeling of 17‐DMAG in complex with human Hsp90. Chem Biol 10: 361 – 368.en_US
dc.identifier.citedreferenceRoe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, Pearl LH ( 1999 ) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42: 260 – 266.en_US
dc.identifier.citedreferenceObermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU ( 1998 ) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143: 901 – 910.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.