Show simple item record

Lysophosphatidic Acid Induces Migration of Human Lung‐Resident Mesenchymal Stem Cells Through the β‐Catenin Pathway

dc.contributor.authorBadri, Lindaen_US
dc.contributor.authorLama, Vibha N.en_US
dc.date.accessioned2012-09-05T14:46:09Z
dc.date.available2013-10-18T17:47:29Zen_US
dc.date.issued2012-09en_US
dc.identifier.citationBadri, Linda; Lama, Vibha N. (2012). "Lysophosphatidic Acid Induces Migration of Human Lung‐Resident Mesenchymal Stem Cells Through the β‐Catenin Pathway ." STEM CELLS 30(9): 2010-2019. <http://hdl.handle.net/2027.42/93548>en_US
dc.identifier.issn1066-5099en_US
dc.identifier.issn1549-4918en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93548
dc.description.abstractMesenchymal stem cells (MSCs) have been demonstrated to reside in human adult organs. However, mechanisms of migration of these endogenous MSCs within their tissue of origin are not well understood. Here, we investigate migration of human adult lung‐resident (LR) mesenchymal progenitor cells. We demonstrate that bioactive lipid lysophosphatidic acid (LPA) plays a principal role in the migration of human LR‐MSCs through a signaling pathway involving LPA1‐induced β‐catenin activation. LR‐MSCs isolated from human lung allografts and lungs of patients with scleroderma demonstrated a robust migratory response to LPA in vitro. Furthermore, LPA levels correlated with LR‐MSC numbers in bronchoalveolar lavage (BAL), providing demonstration of the in vivo activity of LPA in human adult lungs. Migration of LR‐MSCs was mediated via LPA1 receptor ligation and LPA1 silencing significantly abrogated the migratory response of LR‐MSCs to LPA as well as human BAL. LPA treatment of LR‐MSCs induced protein kinase C‐mediated glycogen synthase kinase‐3β phosphorylation, with resulting cytoplasmic accumulation and nuclear translocation of β‐catenin. TCF/LEF dual luciferase gene reporter assay demonstrated a significant increase in transcriptional activity after LPA treatment. LR‐MSC migration and increase in reporter gene activity in the presence of LPA were abolished by transfection with β‐catenin small interfering RNA demonstrating that β‐catenin is critical in mediating LPA‐induced LR‐MSC migration. These data delineate a novel signaling pathway through which ligation of a G protein‐coupled receptor by a biologically relevant lipid mediator induces migration of human tissue‐resident mesenchymal progenitors. S tem C ells 2012;30:2010–2019en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherLysophosphatidic Aciden_US
dc.subject.otherβ‐Cateninen_US
dc.subject.otherMesenchymal Stem Cellen_US
dc.subject.otherTissue‐Residenten_US
dc.subject.otherLungen_US
dc.subject.otherMigrationen_US
dc.titleLysophosphatidic Acid Induces Migration of Human Lung‐Resident Mesenchymal Stem Cells Through the β‐Catenin Pathwayen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDivision of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 E Medical Center Drive, 3916 Taubman Center, Ann Arbor, Michigan 48109‐0360, USAen_US
dc.contributor.affiliationumDivision of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USAen_US
dc.identifier.pmid22782863en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93548/1/1171_ftp.pdf
dc.identifier.doi10.1002/stem.1171en_US
dc.identifier.sourceSTEM CELLSen_US
dc.identifier.citedreferenceNeth P, Ciccarella M, Egea V et al. Wnt signaling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells 2006; 24: 1892 – 1903.en_US
dc.identifier.citedreferenceAnliker B, Chun J. Lysophospholipid G protein‐coupled receptors. J Biol Chem 2004; 279: 20555 – 20558.en_US
dc.identifier.citedreferenceFukushima N, Ishii I, Contos JJ et al. Lysophospholipid receptors. Annu Rev Pharmacol Toxicol 2001; 41: 507 – 534.en_US
dc.identifier.citedreferenceCastelino FV, Seiders J, Bain G et al. Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma. Arthritis Rheum 2011; 63: 1405 – 1415.en_US
dc.identifier.citedreferencePradere JP, Gonzalez J, Klein J et al. Lysophosphatidic acid and renal fibrosis. Biochim Biophys Acta 2008; 1781: 582 – 587.en_US
dc.identifier.citedreferencePradere JP, Klein J, Gres S et al. LPA1 receptor activation promotes renal interstitial fibrosis. J Am Soc Nephrol 2007; 18: 3110 – 3118.en_US
dc.identifier.citedreferenceTager AM, LaCamera P, Shea BS et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med 2008; 14: 45 – 54.en_US
dc.identifier.citedreferenceHaegel H, Larue L, Ohsugi M et al. Lack of beta‐catenin affects mouse development at gastrulation. Development 1995; 121: 3529 – 3537.en_US
dc.identifier.citedreferenceHuelsken J, Vogel R, Brinkmann V et al. Requirement for beta‐catenin in anterior‐posterior axis formation in mice. J Cell Biol 2000; 148: 567 – 578.en_US
dc.identifier.citedreferenceCheon SS, Cheah AY, Turley S et al. Beta‐catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc Natl Acad Sci USA 2002; 99: 6973 – 6978.en_US
dc.identifier.citedreferenceLam AP, Flozak AS, Russell S et al. Nuclear beta‐catenin is increased in systemic sclerosis pulmonary fibrosis and promotes lung fibroblast migration and proliferation. Am J Respir Cell Mol Biol 2011; 45: 915 – 922.en_US
dc.identifier.citedreferenceNovak A, Dedhar S. Signaling through beta‐catenin and Lef/Tcf. Cell Mol Life Sci 1999; 56: 523 – 537.en_US
dc.identifier.citedreferenceShevtsov SP, Haq S, Force T. Activation of beta‐catenin signaling pathways by classical G‐protein‐coupled receptors: Mechanisms and consequences in cycling and non‐cycling cells. Cell Cycle 2006; 5: 2295 – 2300.en_US
dc.identifier.citedreferenceNelson WJ, Nusse R. Convergence of Wnt, beta‐catenin, and cadherin pathways. Science 2004; 303: 1483 – 1487.en_US
dc.identifier.citedreferenceBullions LC, Levine AJ. The role of beta‐catenin in cell adhesion, signal transduction, and cancer. Curr Opin Oncol 1998; 10: 81 – 87.en_US
dc.identifier.citedreferenceMaeda Y, Dave V, Whitsett JA. Transcriptional control of lung morphogenesis. Physiol Rev 2007; 87: 219 – 244.en_US
dc.identifier.citedreferenceBadri L, Walker NM, Ohtsuka T et al. Epithelial interactions and local engraftment of lung‐resident mesenchymal stem cells. Am J Respir Cell Mol Biol 2011; 45: 809 – 816.en_US
dc.identifier.citedreferenceMaijenburg MW, van der Schoot CE, Voermans C. Mesenchymal stromal cell migration: Possibilities to improve cellular therapy. Stem Cells Dev 2012; 21: 19 – 29.en_US
dc.identifier.citedreferenceTolar J, Le Blanc K, Keating A et al. Concise review: Hitting the right spot with mesenchymal stromal cells. Stem Cells 2010; 28: 1446 – 1455.en_US
dc.identifier.citedreferenceLai TY, Su CC, Kuo WW et al. Beta‐catenin plays a key role in metastasis of human hepatocellular carcinoma. Oncol Rep 2011; 26: 415 – 422.en_US
dc.identifier.citedreferenceYang M, Zhong WW, Srivastava N et al. G protein‐coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the {beta}‐catenin pathway. Proc Natl Acad Sci USA 2005; 102: 6027 – 6032.en_US
dc.identifier.citedreferenceContos JJ, Ishii I, Fukushima N et al. Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: Signaling deficits without obvious phenotypic abnormality attributable to lpa(2). Mol Cell Biol 2002; 22: 6921 – 6929.en_US
dc.identifier.citedreferenceBienz M. Beta‐catenin: A pivot between cell adhesion and Wnt signalling. Curr Biol 2005; 15: R64 – 67.en_US
dc.identifier.citedreferenceHarris TJ, Peifer M. Decisions, decisions: Beta‐catenin chooses between adhesion and transcription. Trends Cell Biol 2005; 15: 234 – 237.en_US
dc.identifier.citedreferenceBelperio JA, Weigt SS, Fishbein MC et al. Chronic lung allograft rejection: Mechanisms and therapy. Proc Am Thorac Soc 2009; 6: 108 – 121.en_US
dc.identifier.citedreferenceHoyles RK, Derrett‐Smith EC, Khan K et al. An essential role for resident fibroblasts in experimental lung fibrosis is defined by lineage‐specific deletion of high‐affinity type II transforming growth factor beta receptor. Am J Respir Crit Care Med 2011; 183: 249 – 261.en_US
dc.identifier.citedreferenceHumphreys BD, Lin SL, Kobayashi A et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 2010; 176: 85 – 97.en_US
dc.identifier.citedreferenceWalker N, Badri L, Wettlaufer S et al. Resident tissue‐specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts. Am J Pathol 2011; 178: 2461 – 2469.en_US
dc.identifier.citedreferenceBruno S, Bussolati B, Grange C et al. Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Stem Cells Dev 2009; 18: 867 – 880.en_US
dc.identifier.citedreferenceHoogduijn MJ, Crop MJ, Peeters AM et al. Donor‐derived mesenchymal stem cells remain present and functional in the transplanted human heart. Am J Transplant 2009; 9: 222 – 230.en_US
dc.identifier.citedreferenceLama VN, Smith L, Badri L et al. Evidence for tissue‐resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest 2007; 117: 989 – 996.en_US
dc.identifier.citedreferenceBadri L, Murray S, Liu LX et al. Mesenchymal stromal cells in bronchoalveolar lavage as predictors of bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2011; 183: 1062 – 1070.en_US
dc.identifier.citedreferenceMoolenaar WH. Development of our current understanding of bioactive lysophospholipids. Ann N Y Acad Sci 2000; 905: 1 – 10.en_US
dc.identifier.citedreferenceRivera R, Chun J. Biological effects of lysophospholipids. Rev Physiol Biochem Pharmacol 2008; 160: 25 – 46.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.