Show simple item record

Next generation analytic tools for large scale genetic epidemiology studies of complex diseases

dc.contributor.authorMechanic, Leah E.en_US
dc.contributor.authorChen, Huann‐shengen_US
dc.contributor.authorAmos, Christopher I.en_US
dc.contributor.authorChatterjee, Nilanjanen_US
dc.contributor.authorCox, Nancy J.en_US
dc.contributor.authorDivi, Rao L.en_US
dc.contributor.authorFan, Ruzongen_US
dc.contributor.authorHarris, Emily L.en_US
dc.contributor.authorJacobs, Kevinen_US
dc.contributor.authorKraft, Peteren_US
dc.contributor.authorLeal, Suzanne M.en_US
dc.contributor.authorMcAllister, Kimberlyen_US
dc.contributor.authorMoore, Jason H.en_US
dc.contributor.authorPaltoo, Dina N.en_US
dc.contributor.authorProvince, Michael A.en_US
dc.contributor.authorRamos, Erin M.en_US
dc.contributor.authorRitchie, Marylyn D.en_US
dc.contributor.authorRoeder, Kathrynen_US
dc.contributor.authorSchaid, Daniel J.en_US
dc.contributor.authorStephens, Matthewen_US
dc.contributor.authorThomas, Duncan C.en_US
dc.contributor.authorWeinberg, Clarice R.en_US
dc.contributor.authorWitte, John S.en_US
dc.contributor.authorZhang, Shunpuen_US
dc.contributor.authorZöllner, Sebastianen_US
dc.contributor.authorFeuer, Eric J.en_US
dc.contributor.authorGillanders, Elizabeth M.en_US
dc.date.accessioned2012-09-05T14:46:16Z
dc.date.available2013-03-04T15:29:56Zen_US
dc.date.issued2012-01en_US
dc.identifier.citationMechanic, Leah E.; Chen, Huann‐sheng ; Amos, Christopher I.; Chatterjee, Nilanjan; Cox, Nancy J.; Divi, Rao L.; Fan, Ruzong; Harris, Emily L.; Jacobs, Kevin; Kraft, Peter; Leal, Suzanne M.; McAllister, Kimberly; Moore, Jason H.; Paltoo, Dina N.; Province, Michael A.; Ramos, Erin M.; Ritchie, Marylyn D.; Roeder, Kathryn; Schaid, Daniel J.; Stephens, Matthew; Thomas, Duncan C.; Weinberg, Clarice R.; Witte, John S.; Zhang, Shunpu; Zöllner, Sebastian ; Feuer, Eric J.; Gillanders, Elizabeth M. (2012). "Next generation analytic tools for large scale genetic epidemiology studies of complex diseases." Genetic Epidemiology 36(1): 22-35. <http://hdl.handle.net/2027.42/93578>en_US
dc.identifier.issn0741-0395en_US
dc.identifier.issn1098-2272en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93578
dc.description.abstractOver the past several years, genome‐wide association studies (GWAS) have succeeded in identifying hundreds of genetic markers associated with common diseases. However, most of these markers confer relatively small increments of risk and explain only a small proportion of familial clustering. To identify obstacles to future progress in genetic epidemiology research and provide recommendations to NIH for overcoming these barriers, the National Cancer Institute sponsored a workshop entitled “Next Generation Analytic Tools for Large‐Scale Genetic Epidemiology Studies of Complex Diseases” on September 15–16, 2010. The goal of the workshop was to facilitate discussions on (1) statistical strategies and methods to efficiently identify genetic and environmental factors contributing to the risk of complex disease; and (2) how to develop, apply, and evaluate these strategies for the design, analysis, and interpretation of large‐scale complex disease association studies in order to guide NIH in setting the future agenda in this area of research. The workshop was organized as a series of short presentations covering scientific (gene‐gene and gene‐environment interaction, complex phenotypes, and rare variants and next generation sequencing) and methodological (simulation modeling and computational resources and data management) topic areas. Specific needs to advance the field were identified during each session and are summarized. Genet. Epidemiol . 36 : 22–35, 2012. © 2011 Wiley Periodicals, Inc.en_US
dc.publisherUniversity of Chicagoen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSimulationsen_US
dc.subject.otherComputational Resourcesen_US
dc.subject.otherGene‐Gene Interactionsen_US
dc.subject.otherGene‐Environment Interactionsen_US
dc.subject.otherRare Variantsen_US
dc.subject.otherNext Generation Sequencingen_US
dc.subject.otherComplex Phenotypesen_US
dc.titleNext generation analytic tools for large scale genetic epidemiology studies of complex diseasesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22147673en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93578/1/gepi20652.pdf
dc.identifier.doi10.1002/gepi.20652en_US
dc.identifier.sourceGenetic Epidemiologyen_US
dc.identifier.citedreferenceRichter BG, Sexton DP. 2009. Managing and analyzing next‐generation sequence data. PLoS Comput Biol 5: e1000369.en_US
dc.identifier.citedreferenceKraft P, Hunter D. 2009. The challenge of assessing complex gene‐gene and gene‐environment interactions. In: Khoury M, Bedrosian S, Gwinn M, Higgins J, Ioannidis J, Little J, editors. Human Genome Epidemiology, 2nd edition. New York: Oxford University Press.en_US
dc.identifier.citedreferenceLander ES. 2011. Initial impact of the sequencing of the human genome. Nature 470: 187 – 197.en_US
dc.identifier.citedreferenceLangholz B, Borgan Ø 1995. Counter‐matching: a stratified nested case‐control sampling method. Biometrika 82: 69 – 79.en_US
dc.identifier.citedreferenceLaurie CC, Doheny KF, Mirel DB, Pugh EW, Bierut LJ, Bhangale T, Boehm F, Caporaso NE, Cornelis MC, Edenberg HJ, et al. 2010. Quality control and quality assurance in genotypic data for genome‐wide association studies. Genet Epidemiol 34: 591 – 602.en_US
dc.identifier.citedreferenceLi D, Conti DV. 2009. Detecting gene‐environment interactions using a combined case‐only and case‐control approach. Am J Epidemiol 169: 497 – 504.en_US
dc.identifier.citedreferenceLi B, Leal SM. 2008. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83: 311 – 321.en_US
dc.identifier.citedreferenceLiu DJ, Leal SM. 2010. A novel adaptive method for the analysis of next‐generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions. PLoS Genet 6: e1001156.en_US
dc.identifier.citedreferenceLiu Y, Athanasiadis G, Weale ME. 2008. A survey of genetic simulation software for population and epidemiological studies. Hum Genomics 3: 79 – 86.en_US
dc.identifier.citedreferenceMadsen BE, Browning SR. 2009. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5: e1000384.en_US
dc.identifier.citedreferenceManolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al. 2009. Finding the missing heritability of complex diseases. Nature 461: 747 – 753.en_US
dc.identifier.citedreferenceMardis ER. 2010. The $1,000 genome, the $100,000 analysis? Genome Med 2: 84.en_US
dc.identifier.citedreferenceMilne R, Gaudet M, Spurdle A, Fasching P, Couch F, Benitez J, Arias Perez JI, Zamora MP, Malats N, dos Santos Silva I, et al. 2010. Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case‐control study. Breast Cancer Res 12: R110.en_US
dc.identifier.citedreferenceMoore JH, Barney N, Tsai CT, Chiang FT, Gui J, White BC. 2007. Symbolic modeling of epistasis. Hum Hered 63: 120 – 133.en_US
dc.identifier.citedreferenceMoore JH, Andrews PC, Barney N, White BC. 2008. Development and evaluation of an open‐ended computational evolution system for the genetic analysis of susceptibility to common human diseases. Lect Notes Comput Sci 4973: 129 – 140.en_US
dc.identifier.citedreferenceMoore JH, Asselbergs FW, Williams SM. 2010. Bioinformatics challenges for genome‐wide association studies. Bioinformatics 26: 445 – 455.en_US
dc.identifier.citedreferenceMoore J, Cowper Sal.Lari R, Hill D, Hibberd P, Madan J. 2011. Human microbiome visualization using 3D technology. Pac Symp Biocomput 16: 154 – 164.en_US
dc.identifier.citedreferenceMorgenthaler S, Thilly WG. 2007. A strategy to discover genes that carry multi‐allelic or mono‐allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res/Fundam Mol Mech Mutagen 615: 28 – 56.en_US
dc.identifier.citedreferenceMukherjee B, Chatterjee N. 2008. Exploiting gene‐environment independence for analysis of case–control studies: an empirical bayes‐type shrinkage estimator to trade‐off between bias and efficiency. Biometrics 64: 685 – 694.en_US
dc.identifier.citedreferenceMukherjee B, Ahn J, Gruber SB, Chatterjee N. 2011. Testing gene‐environment interaction in large scale case‐control association studies: possible choices and comparisons. Am J Epidemiol.en_US
dc.identifier.citedreferenceMurcray CE, Lewinger JP, Gauderman WJ. 2009. Gene‐environment interaction in genome‐wide association studies. Am J Epidemiol 169: 219 – 226.en_US
dc.identifier.citedreferenceNeale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orho‐Melander M, Kathiresan S, Purcell SM, Roeder K, Daly MJ. 2011. Testing for an unusual distribution of rare variants. PLoS Genet 7: e1001322.en_US
dc.identifier.citedreferencePeng B, Amos CI, Kimmel M. 2007. Forward‐time simulations of human populations with complex diseases. PLoS Genet 3: e47.en_US
dc.identifier.citedreferencePennisi E. 2011. Human genome 10th anniversary. Will computers crash genomics? Science 331: 666 – 668.en_US
dc.identifier.citedreferencePiegorsch WW, Weinberg CR, Taylor JA. 1994. Non‐hierarchical logistic models and case‐only designs for assessing susceptibility in population‐based case‐control studies. Stat Med 13: 153 – 162.en_US
dc.identifier.citedreferencePrice AL, Kryukov GV, de Bakker PIW, Purcell SM, Staples J, Wei L‐J, Sunyaev SR. 2010. Pooled association tests for rare variants in exon‐resequencing studies. Am J Hum Genet 86: 832 – 838.en_US
dc.identifier.citedreferenceRitchie MD, Bush WS. 2010. Genome simulation: approaches for synthesizing in silico datasets for human genomics. In: Jay CD, Jason HM, editors. Advances in Genetics. New York: Academic Press, p 1 – 24.en_US
dc.identifier.citedreferenceRitchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH. 2001. Multifactor‐dimensionality reduction reveals high‐order interactions among estrogen‐metabolism genes in sporadic breast cancer. Am J Hum Genet 69: 138 – 147.en_US
dc.identifier.citedreferenceRosenstiel P, Sina C, Franke A, Schreiber S. 2009. Towards a molecular risk map—recent advances on the etiology of inflammatory bowel disease. Semin Immunol 21: 334 – 345.en_US
dc.identifier.citedreferenceRothman KJ, Greenland S, Walker AM. 1980. Concepts of interaction. Am J Epidemiol 112: 467 – 470.en_US
dc.identifier.citedreferenceSchadt EE, Lamb J, Yang X, Zhu J, Edwards S, GuhaThakurta D, Sieberts SK, Monks S, Reitman M, Zhang C, et al. 2005. An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37: 710 – 717.en_US
dc.identifier.citedreferenceSchwarz DF, König IR, Ziegler A. 2010. On safari to Random Jungle: a fast implementation of Random Forests for high‐dimensional data. Bioinformatics 26: 1752 – 1758.en_US
dc.identifier.citedreferenceSiemiatycki J, Thomas DC. 1981. Biological models and statistical interactions: an example from multistage carcinogenesis. Int J Epidemiol 10: 383 – 387.en_US
dc.identifier.citedreferenceSinnott‐Armstrong N, Greene C, Cancare F, Moore J. 2009. Accelerating epistasis analysis in human genetics with consumer graphics hardware. BMC Res Notes 2: 149.en_US
dc.identifier.citedreferenceSmith GD, Ebrahim S. 2004. Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol 33: 30 – 42.en_US
dc.identifier.citedreferenceStein LD. 2010. The case for cloud computing in genome informatics. Genome Biol 11: 207.en_US
dc.identifier.citedreferenceStephens M. 2010. A Unified Framework for Testing Multiple Phenotypes for Association with Genetic Variants. Washington DC: The American Society of Human Genetics.en_US
dc.identifier.citedreferenceInternational HapMap Consortium. 2005. A haplotype map of the human genome. Nature 437: 1299 ‐ 1320.en_US
dc.identifier.citedreferenceThomas D. 2004. Statistical Methods in Genetic Epidemiology. New York: Oxford University Press.en_US
dc.identifier.citedreferenceThomas D. 2010. Gene‐environment‐wide association studies: emerging approaches. Nat Rev Genet 11: 259 – 272.en_US
dc.identifier.citedreferenceThomas DC, Lewinger JP, Murcray CE, Gauderman WJ. 2011. GE‐whiz! Ratcheting gene‐environment studies up to the whole genome and the whole exposome. Am J Epidemiol.en_US
dc.identifier.citedreferenceThompson WD. 1991. Effect modification and the limits of biological inference from epidemiologic data. J Clin Epidemiol 44: 221 – 232.en_US
dc.identifier.citedreferenceTurner S, Armstrong LL, Bradford Y, Carlson CS, Crawford DC, Crenshaw AT, de Andrade M, Doheny KF, Haines JL, Hayes G, et al. 2001. Quality Control Procedures for Genome‐Wide Association Studies. New York: Wiley.en_US
dc.identifier.citedreferenceVansteelandt S, Goetgeluk S, Lutz S, Waldman I, Lyon H, Schadt EE, Weiss ST, Lange C. 2009. On the adjustment for covariates in genetic association analysis: a novel, simple principle to infer direct causal effects. Genet Epidemiol 33: 394 – 405.en_US
dc.identifier.citedreferenceVineis P, Perera F. 2007. Molecular epidemiology and biomarkers in etiologic cancer research: the new in light of the old. Cancer Epidemiol Biomarkers Prev 16: 1954 – 1965.en_US
dc.identifier.citedreferenceWeinberg CR. 1986. Applicability of the simple independent action model to epidemiologic studies involving two factors and a dichotomous outcome. Am J Epidemiol 123: 162 – 173.en_US
dc.identifier.citedreferenceZawistowski M, Gopalakrishnan S, Ding J, Li Y, Grimm S, Zöllner S. 2010. Extending rare‐variant testing strategies: analysis of noncoding sequence and imputed genotypes. Am J Hum Genet 87: 604– 617.en_US
dc.identifier.citedreferenceZeggini E. 2011. Next‐generation association studies for complex traits. Nat Genet 43: 287 – 288.en_US
dc.identifier.citedreferenceZhang Y, Liu JS. 2007. Bayesian inference of epistatic interactions in case‐control studies. Nat Genet 39: 1167 – 1173.en_US
dc.identifier.citedreferenceZhang J, Chiodini R, Badr A, Zhang G. 2011. The impact of next‐generation sequencing on genomics. J Genet Genomics 38: 95 – 109.en_US
dc.identifier.citedreferenceZhou H, Sehl ME, Sinsheimer JS, Lange K. 2010. Association screening of common and rare genetic variants by penalized regression. Bioinformatics 26: 2375 – 2382.en_US
dc.identifier.citedreferenceAlbert PS, Ratnasinghe D, Tangrea J, Wacholder S. 2001. Limitations of the case‐only design for identifying gene‐environment interactions. Am J Epidemiol 154: 687 – 693.en_US
dc.identifier.citedreferenceAndrieu N, Goldstein AM, Thomas DC, Langholz B. 2001. Counter‐matching in studies of gene‐environment interaction: efficiency and feasibility. Am J Epidemiol 153: 265 – 274.en_US
dc.identifier.citedreferenceBansal V, Libiger O, Torkamani A, Schork NJ. 2010. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11: 773 – 785.en_US
dc.identifier.citedreferenceBlot WJ, Day NE. 1979. Synergism and interaction: are they equivalent? Am J Epidemiol 110: 99 – 100.en_US
dc.identifier.citedreferenceBochud M, Chiolero A, Elston RC, Paccaud F. 2008. A cautionary note on the use of Mendelian randomization to infer causation in observational epidemiology. Int J Epidemiol 37: 414 – 416.en_US
dc.identifier.citedreferenceBreslow NE, Chatterjee N. 1998. Design and analysis of two‐phase studies with binary outcomes. Appl Stat 48: 457 – 468.en_US
dc.identifier.citedreferenceBroeks A, Schmidt MK, Sherman ME, Couch FJ, Hopper JL, Dite GS, Apicella C, Smith LD, Hammet F, Southey MC, Van t Veer LJ, de Groot R, Smit VTHBM, Fasching PA, Beckmann MW, Jud S, Ekici AB, Hartmann A, Hein A, Schulz‐Wendtland R, Burwinkel B, Marme F, Schneeweiss A, Sinn H‐P, Sohn C, Tchatchou S, Bojesen SE, Nordestgaard BG, Flyger H, Ørsted DD, Kaur‐Knudsen D, Milne RL, Pérez JIA, Zamora P, Rodríguez PM, Benítez J, Brauch H, Justenhoven C, Ko Y‐D, Network TG, Hamann U, Fischer H‐P, Brüning T, Pesch B, Chang‐Claude J, Wang‐Gohrke S, Bremer M, Karstens JH, Hillemanns P, Dörk T, Nevanlinna HA, Heikkinen T, Heikkilä P, Blomqvist C, Aittomäki K, Aaltonen K, Lindblom A, Margolin S, Mannermaa A, Kosma V‐M, Kauppinen JM, Kataja V, Auvinen P, Eskelinen M, Soini Y, Chenevix‐Trench G, Spurdle AB, Beesley J, Chen X, Holland H, kConFab AOCS, Lambrechts D, Claes B, Vandorpe T, Neven P, Wildiers H, Flesch‐Janys D, Hein R, Löning T, Kosel M, Fredericksen ZS, Wang X, Giles GG, Baglietto L, Severi G, McLean C, Haiman CA, Henderson BE, Le Marchand L, Kolonel LN, Grenaker Alnæs G, Kristensen V, Børresen‐Dale A‐L, Hunter DJ, Hankinson SE, Andrulis IL, Marie Mulligan A, O'Malley FP, Devilee P, Huijts PEA, Tollenaar RAEM, Van Asperen CJ, Seynaeve CS, Chanock SJ, Lissowska J, Brinton L, Peplonska B, Figueroa J, Yang XR, Hooning MJ, Hollestelle A, Oldenburg RA, Jager A, Kriege M, Ozturk B, van Leenders GJLH, Hall P, Czene K, Humphreys K, Liu J, Cox A, Connley D, Cramp HE, Cross SS, Balasubramanian SP, Reed MWR, Dunning AM, Easton DF, Humphreys MK, Caldas C, Blows F, Driver K, Provenzano E, Lubinski J, Jakubowska A, Huzarski T, Byrski T, Cybulski C, Gorski B, Gronwald J, Brennan P, Sangrajrang S, Gaborieau V, Shen C‐Y, Hsiung C‐N, Yu J‐C, Chen S‐T, Hsu G‐C, Hou M‐F, Huang C‐S, Anton‐Culver H, Ziogas A, Pharoah PDP, Garcia‐Closas M. 2011. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Hum Mol Genet 20: 3289 – 3303.en_US
dc.identifier.citedreferenceCarvajal‐Carmona LG. 2010. Challenges in the identification and use of rare disease‐associated predisposition variants. Curr Opin Genet Dev 20: 277 – 281.en_US
dc.identifier.citedreferenceChen YH, Chatterjee N, Carroll RJ. 2009. Shrinkage estimators for robust and efficient inference in haplotype‐based case‐control studies. J Am Stat Assoc 104: 220 – 233.en_US
dc.identifier.citedreferenceCiampa J, Yeager M, Amundadottir L, Jacobs K, Kraft P, Chung C, Wacholder S, Yu K, Wheeler W, Thun MJ, Divers WR, Gapstur S, Albanes D, Virtamo J, Weinstein S, Giovannucci E, Willet WC, Cancel‐Tassin G, Cussenot O, Valeri A, Hunter D, Hoover R, Thomas G, Chanock S, Chatterjee N. 2011. Large scale exploration of gene‐gene interactions in prostate cancer using a multi‐stage genome‐wide association study. Cancer Res 71: 3287 – 3295.en_US
dc.identifier.citedreferenceCirulli ET, Goldstein DB. 2010. Uncovering the roles of rare variants in common disease through whole‐genome sequencing. Nat Rev Genet 11: 415 – 425.en_US
dc.identifier.citedreferenceCordell HJ. 2009. Detecting gene‐gene interactions that underlie human diseases. Nat Rev Genet 10: 392 – 404.en_US
dc.identifier.citedreferenceCornelis MC, Tchetgen Tchetgen EJ, Liang L, Qi L, Chatterjee N, Hu FB, Kraft P. 2011. Gene‐environment interactions in genome‐wide association studies: a comparative study of tests applied to empirical studies of type 2 diabetes. Am J Epidemiol.en_US
dc.identifier.citedreferenceCox NJ. 2010. Complex traits. University of Chicago.en_US
dc.identifier.citedreferenceDe Silva NM, Frayling TM. 2010. Novel biological insights emerging from genetic studies of type 2 diabetes and related metabolic traits. Curr Opin Lipidol 21: 44 – 50.en_US
dc.identifier.citedreferenceDrake T, Schadt E, Lusis A. 2006. Integrating genetic and gene expression data: application to cardiovascular and metabolic traits in mice. Mamm Genome 17: 466 – 479.en_US
dc.identifier.citedreferenceEichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. 2010. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11: 446 – 450.en_US
dc.identifier.citedreferenceGottesman II, Gould TD. 2003. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160: 636 – 645.en_US
dc.identifier.citedreferenceGreen ED, Guyer MS. 2011. Charting a course for genomic medicine from base pairs to bedside. Nature 470: 204 – 213.en_US
dc.identifier.citedreferenceGreene CS, Sinnott‐Armstrong NA, Himmelstein DS, Park PJ, Moore JH, Harris BT. 2010. Multifactor dimensionality reduction for graphics processing units enables genome‐wide testing of epistasis in sporadic ALS. Bioinformatics 26: 694 – 695.en_US
dc.identifier.citedreferenceGreenland S. 1993. Basic problems in interaction assessment. Environ Health Perspect 101: 59 – 66.en_US
dc.identifier.citedreferenceHan F, Pan W. 2010. A data‐adaptive sum test for disease association with multiple common or rare variants. Hum Hered 70: 42 – 54.en_US
dc.identifier.citedreferenceHill WG, Goddard ME, Visscher PM. 2008. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4: e1000008.en_US
dc.identifier.citedreferenceHoffmann TJ, Marini NJ, Witte JS. 2010. Comprehensive approach to analyzing rare genetic variants. PLoS ONE 5: e13584.en_US
dc.identifier.citedreferenceInternational HapMap3 Consortium TIH. 2010. Integrating common and rare genetic variation in diverse human populations. Nature 467: 52 – 58.en_US
dc.identifier.citedreferenceInternational HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhao H, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X, He Y, Jin L, Liu Y, Shen Y, Sun W, Wang H, Wang Y, Wang Y, Xiong X, Xu L, Waye MM, Tsui SK, Xue H, Wong JT, Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S, Sallée C, Verner A, Hudson TJ, Kwok PY, Cai D, Koboldt DC, Miller RD, Pawlikowska L, Taillon‐Miller P, Xiao M, Tsui LC, Mak W, Song YQ, Tam PK, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P, Bentley DR, Daly MJ, de Bakker PI, Barrett J, Chretien YR, Maller J, McCarroll S, Patterson N, Pe'er I, Price A, Purcell S, Richter DJ, Sabeti P, Saxena R, Schaffner SF, Sham PC, Varilly P, Altshuler D, Stein LD, Krishnan L, Smith AV, Tello‐Ruiz MK, Thorisson GA, Chakravarti A, Chen PE, Cutler DJ, Kashuk CS, Lin S, Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ, McVean G, Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers S, Spencer C, Stephens M, Donnelly P, Cardon LR, Clarke G, Evans DM, Morris AP, Weir BS, Tsunoda T, Mullikin JC, Sherry ST, Feolo M, Skol A, Zhang H, Zeng C, Zhao H, Matsuda I, Fukushima Y, Macer DR, Suda E, Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T, Marshall PA, Nkwodimmah C, Royal CD, Leppert MF, Dixon M, Peiffer A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF, Knoppers BM, Foster MW, Clayton EW, Watkin J, Gibbs RA, Belmont JW, Muzny D, Nazareth L, Sodergren E, Weinstock GM, Wheeler DA, Yakub I, Gabriel SB, Onofrio RC, Richter DJ, Ziaugra L, Birren BW, Daly MJ, Altshuler D, Wilson RK, Fulton LL, Rogers J, Burton J, Carter NP, Clee CM, Griffiths M, Jones MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL, Chen Z, Han H, Kang L, Godbout M, Wallenburg JC, L'Archevêque P, Bellemare G, Saeki K, Wang H, An D, Fu H, Li Q, Wang Z, Wang R, Holden AL, Brooks LD, McEwen JE, Guyer MS, Wang VO, Peterson JL, Shi M, Spiegel J, Sung LM, Zacharia LF, Collins FS, Kennedy K, Jamieson R, Stewart J. 2007. A second generation human haplotype map of over 3.1 million SNPs. Nature 449: 851 – 861.en_US
dc.identifier.citedreferenceJirtle RL, Skinner MK. 2007. Environmental epigenomics and disease susceptibility. Nat Rev Genet 8: 253 – 262.en_US
dc.identifier.citedreferenceKendler KS, Neale MC. 2010. Endophenotype: a conceptual analysis. Mol Psychiatry 15: 789 – 797.en_US
dc.identifier.citedreferenceKlein RJ, Zeiss C, Chew EY, Tsai J‐Y, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, et al. 2005. Complement factor H polymorphism in age‐related macular degeneration. Science 308: 385 – 389.en_US
dc.identifier.citedreferenceKooperberg C, Ruczinski I. 2005. Identifying interacting SNPs using Monte Carlo logic regression. Genet Epidemiol 28: 157 – 170.en_US
dc.identifier.citedreferenceKooperberg C, Ruczinski I, LeBlanc ML, Hsu L. 2001. Sequence analysis using logic regression. Genet Epidemiol 21: S626 – S631.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.