Show simple item record

How do stream organisms respond to, and influence, the concentration of titanium dioxide nanoparticles? A mesocosm study with algae and herbivores

dc.contributor.authorKulacki, Konrad J.en_US
dc.contributor.authorCardinale, Bradley J.en_US
dc.contributor.authorKeller, Arturo A.en_US
dc.contributor.authorBier, Ravenen_US
dc.contributor.authorDickson, Helenen_US
dc.date.accessioned2012-10-02T17:19:55Z
dc.date.available2013-11-04T19:53:16Zen_US
dc.date.issued2012-10en_US
dc.identifier.citationKulacki, Konrad J.; Cardinale, Bradley J.; Keller, Arturo A.; Bier, Raven; Dickson, Helen (2012). "How do stream organisms respond to, and influence, the concentration of titanium dioxide nanoparticles? A mesocosm study with algae and herbivores." Environmental Toxicology and Chemistry 31(10): 2414-2422. <http://hdl.handle.net/2027.42/93650>en_US
dc.identifier.issn0730-7268en_US
dc.identifier.issn1552-8618en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/93650
dc.description.abstractThe biologically active properties of many nanomaterials, coupled with their rapidly expanding production and use, has generated concern that certain types of nanoparticles could have unintended impacts when released into natural ecosystems. In the present study, the authors report the results of an experiment in which they grew three common species of stream algae as monocultures and together as polycultures in the biofilms of stream mesocosms that were exposed to 0, 0.1, or 1.0 ppm nanoparticle titanium dioxide (nTiO 2 ). The nTiO 2 did not alter the growth trajectory of any algal biofilm over 10+ generations. However, Ti accrual in biofilms not only differed among the algal species but was also higher in polycultures than in the average monoculture. Variation in accrual among species compositions was readily predicted by differences in the total biomass achieved by the different biofilms. When biofilms were fed to the herbivorous snail Physa acuta at the end of the experiment, initial concentrations of nTiO 2 did not alter short‐term rates of herbivory. However, because of differences in palatability among the algae, biofilm composition influenced the amount of nTiO 2 that accumulated in the herbivore tissue. The results have important implications for understanding how efficiently nTiO 2 is removed from surface waters and the potential transfer of nanomaterials to higher trophic levels. Environ. Toxicol. Chem. 2012; 31: 2414–2422. © 2012 SETACen_US
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.subject.otherPhysa Acutaen_US
dc.subject.otherStreamen_US
dc.subject.otherMetal Oxideen_US
dc.subject.otherTiO 2en_US
dc.subject.otherNanoparticleen_US
dc.titleHow do stream organisms respond to, and influence, the concentration of titanium dioxide nanoparticles? A mesocosm study with algae and herbivoresen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherDepartment of Ecology, Evolution and Marine Biology, University of California–Santa Barbara, Santa Barbara, California, USAen_US
dc.contributor.affiliationotherDepartment of Biology, Duke University, Durham, North Carolina, USAen_US
dc.contributor.affiliationotherBren School of Environmental Science and Management, University of California–Santa Barbara, Santa Barbara, California, USAen_US
dc.contributor.affiliationotherDepartment of Ecology, Evolution and Marine Biology, University of California–Santa Barbara, Santa Barbara, California, USAen_US
dc.identifier.pmid22847763en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/93650/1/1962_ftp.pdf
dc.identifier.doi10.1002/etc.1962en_US
dc.identifier.sourceEnvironmental Toxicology and Chemistryen_US
dc.identifier.citedreferenceWatanabe MM. 2005. Freshwater culture media. In Andersen RA, ed, Algal Culturing Techniques. Academic, New York, NY, USA, pp 13 – 20.en_US
dc.identifier.citedreferenceAdams LK, Lyon DY, Alvarez PJ. 2006. Comparative eco‐toxicity of nanoscale TiO 2, SiO 2, and ZnO water suspensions. Water Res 40: 3527 – 3532.en_US
dc.identifier.citedreferenceBattin TJ, Kammer FVD, Weilhartner A, Ottofuelling S, Hofmann T. 2009. Nanostructured TiO 2: Transport behavior and effects on aquatic microbial communities under environmental conditions. Environ Sci Technol 43: 8098 – 8104.en_US
dc.identifier.citedreferenceAruoja V, Dubourguier HC, Kasemets K, Kahru A. 2009. Toxicity of nanoparticles of CuO, ZnO, and TiO 2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407: 1461 – 1468.en_US
dc.identifier.citedreferenceMetzler DM, Li MH, Erdem A, Huang CP. 2011. Responses of algae to photocatalytic nano‐TiO 2 particles with an emphasis on the effect of particle size. Chem Eng J 170: 538 – 546.en_US
dc.identifier.citedreferenceKeller AA, Wang HT, Zhou DX, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji ZX. 2010. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44: 1962 – 1967.en_US
dc.identifier.citedreferenceCardinale BJ. 2011. Biodiversity improves water quality through niche partitioning. Nature 472: 86 – 89.en_US
dc.identifier.citedreferenceSteinman AD, McIntire CD. 1986. Effects of current velocity and light energy on the structure of periphyton assemblages in laboratory streams. J Phycol 22: 352 – 361.en_US
dc.identifier.citedreferenceTrainor FR, Cain JR, Shubert LE. 1976. Morphology and nutrition of colonial green‐alga Scenedesmus —80 years later. Bot Rev 42: 5 – 25.en_US
dc.identifier.citedreferenceMulholland PJ, Steinman AD, Marzolf ER, Hart DR, Deangelis DL. 1994. Effect of periphyton biomass on hydraulic characteristics and nutrient cycling in streams. Oecologia 98: 40 – 47.en_US
dc.identifier.citedreferencePennak RW. 1978. Freshwater Invertebrates of the United States. John Wiley and Sons, New York, NY, USA.en_US
dc.identifier.citedreferenceLowe RL, Hunter RD. 1988. Effect of grazing by Physa integra on periphyton community structure. J North Am Benthol Soc 7: 29 – 36.en_US
dc.identifier.citedreferenceVogel S, LaBarbera M. 1978. Simple flow tanks for research and teaching. Bioscience 28: 638 – 645.en_US
dc.identifier.citedreferencePeterson CG, Stevenson RJ. 1992. Resistance and resilience of lotic algal communities—Importance of disturbance timing and current. Ecology 73: 1445 – 1461.en_US
dc.identifier.citedreferencePassy SI. 2001. Spatial paradigms of lotic diatom distribution: A landscape ecology perspective. J Phycol 37: 370 – 378.en_US
dc.identifier.citedreferenceHashimoto K, Irie H, Fujishima A. 2005. TiO 2 photocatalysis: A historical overview and future prospects. Jpn J Appl Phys 44: 8269 – 8285.en_US
dc.identifier.citedreferenceColvin VL. 2003. The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21: 1166 – 1170.en_US
dc.identifier.citedreferenceHillebrand H, Durselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae J Phycol 35: 403 – 424.en_US
dc.identifier.citedreferenceMenard A, Drobne D, Jemec A. 2011. Ecotoxicity of nanosized TiO 2. Review of in vivo data. Environ Pollut 159: 677 – 684.en_US
dc.identifier.citedreferenceHund‐Rinke K, Simon M. 2006. Ecotoxic effect of photocatalytic active nanoparticles TiO 2 on algae and daphnids. Environ Sci Pollut Res 13: 225 – 232.en_US
dc.identifier.citedreferenceWarheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM. 2007. Development of a base set of toxicity tests using ultrafine TiO 2 particles as a component of nanoparticle risk management. Toxicol Lett 171: 99 – 110.en_US
dc.identifier.citedreferenceSadiq IM, Dalai S, Chandrasekaran N, Mukherjee A. 2011. Ecotoxicity study of titania (TiO 2 ) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74: 1180 – 1187.en_US
dc.identifier.citedreferenceBrunet L, Lyon D, Hotze EM, Alvarez PJJ, Wiesner MR. 2009. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol 43: 4355 – 4360.en_US
dc.identifier.citedreferenceReeves JF, Davies SJ, Dodd NJF, Jha AN. 2008. Hydroxyl radicals (·OH) are associated with titanium dioxide (TiO 2 ) nanoparticle‐induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res Fundam Mol Mech Mutagen 640: 113 – 122.en_US
dc.identifier.citedreferenceKim SC, Lee DK. 2005. Preparation of TiO 2 ‐coated hollow glass beads and their application to the control of algal growth in eutrophic water. Microchem J 80: 227 – 232.en_US
dc.identifier.citedreferenceHong FH, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P. 2005. Effect of nano‐TiO 2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105: 269 – 279.en_US
dc.identifier.citedreferenceLei Z, Su MY, Xiao W, Chao L, Qu CX, Liang C, Hao H, Liu XQ, Hong FS. 2007. Effects of nano‐anatase on spectral characteristics and distribution of LHCII on the thylakoid membranes of spinach. Biol Trace Elem Res 120: 273 – 283.en_US
dc.identifier.citedreferenceCardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S. 2012. Biodiversity loss and its impact on humanity. Nature 486: 59 – 67.en_US
dc.identifier.citedreferenceCardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O'Connor MI, Gonzalez A. 2011. The functional role of producer diversity in ecosystems. Am J Bot 98: 572 – 592.en_US
dc.identifier.citedreferenceFerry JL, Craig P, Hexel C, Sisco P, Frey R, Pennington PL, Fulton MH, Scott IG, Decho AW, Kashiwada S, Murphy CJ, Shaw TJ. 2009. Transfer of gold nanoparticles from the water column to the estuarine food web. Nat Nanotechnol 4: 441 – 444.en_US
dc.identifier.citedreferenceRejeski D. 2009. Project on emerging nanotechnologies. Woodrow Wilson International Center for Scholars Consumer Product Safety Commission, Bethesda, MD.en_US
dc.identifier.citedreferenceFarre M, Gajda‐Schrantz K, Kantiani L, Barcelo D. 2009. Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393: 81 – 95.en_US
dc.identifier.citedreferenceHandy RD, Shaw BJ. 2007. Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment, and the public perception of nanotechnology. Health Risk Soc 9: 125 – 144.en_US
dc.identifier.citedreferenceNel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311: 622 – 627.en_US
dc.identifier.citedreferenceScown TM, van Aerle R, Tyler CR. 2010. Do engineered nanoparticles pose a significant threat to the aquatic environment ? Crit Rev Toxicol 40: 653 – 670.en_US
dc.identifier.citedreferenceGuzman KAD, Taylor MR, Banfield JF. 2006. Environmental risks of nanotechnology: National Nanotechnology Initiative Funding, 2000–2004. Environ Sci Technol 40: 1401 – 1407.en_US
dc.identifier.citedreferenceWarheit DB. 2010. Debunking some misconceptions about nanotoxicology. Nano Lett 10: 4777 – 4782.en_US
dc.identifier.citedreferenceHandy RD, Owen R, Valsami‐Jones E. 2008. The ecotoxicology of nanoparticles and nanomaterials: Current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17: 315 – 325.en_US
dc.identifier.citedreferenceMueller NC, Nowack B. 2008. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42: 4447 – 4453.en_US
dc.identifier.citedreferenceBorm P, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E. 2006. The potential risks of nanomaterials: A review carried out for ECETOC. Part Fibre Toxicol 3: 1 – 35.en_US
dc.identifier.citedreferenceJu‐Nam Y, Lead JR. 2008. Manufactured nanoparticles: An overview of their chemistry, interactions, and potential environmental implications. Sci Total Environ 400: 396 – 414.en_US
dc.identifier.citedreferenceKaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M. 2008. Synthetic TiO 2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156: 233 – 239.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.