Show simple item record

Greater muscle co‐contraction results in increased tibiofemoral compressive forces in females who have undergone anterior cruciate ligament reconstruction

dc.contributor.authorTsai, Liang‐chingen_US
dc.contributor.authorMcLean, Scotten_US
dc.contributor.authorColletti, Patrick M.en_US
dc.contributor.authorPowers, Christopher M.en_US
dc.date.accessioned2012-11-07T17:04:31Z
dc.date.available2014-02-03T16:21:43Zen_US
dc.date.issued2012-12en_US
dc.identifier.citationTsai, Liang‐ching ; McLean, Scott; Colletti, Patrick M.; Powers, Christopher M. (2012). "Greater muscle coâ contraction results in increased tibiofemoral compressive forces in females who have undergone anterior cruciate ligament reconstruction ." Journal of Orthopaedic Research 30(12): 2007-2014. <http://hdl.handle.net/2027.42/94246>en_US
dc.identifier.issn0736-0266en_US
dc.identifier.issn1554-527Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94246
dc.description.abstractIndividuals who have undergone ACL reconstruction (ACLR) have been shown to have a higher risk of developing knee osteoarthritis (OA). The elevated risk of knee OA may be associated with increased tibiofemoral compressive forces. The primary purpose of this study was to examine whether females with ACLR demonstrate greater tibiofemoral compressive forces, as well as greater muscle co‐contraction and decreased knee flexion during a single‐leg drop‐land task when compared to healthy females. Ten females with ACLR and 10 healthy females (control group) participated. Each participant underwent two data collection sessions: (1) MRI assessment and (2) biomechanical analysis (EMG, kinematics, and kinetics) during a single‐leg drop‐land task. Joint kinematics, EMG, and MRI‐measured muscle volumes and patella tendon orientation were used as input variables into a MRI‐based EMG‐driven knee model to quantify the peak tibiofemoral compressive forces during landing. Peak tibiofemoral compressive forces were significantly higher in the ACLR group when compared to the control group (97.3 ± 8.0 vs. 88.8 ± 9.8 N · kg −1 ). The ACLR group also demonstrated significantly greater muscle co‐contraction as well as less knee flexion than the control group. Our findings support the premise that individuals with ACLR demonstrate increased tibiofemoral compression as well as greater muscle co‐contraction and decreased knee flexion during a drop‐land task. Future studies are needed to examine whether correcting abnormal neuromuscular strategies and reducing tibiofemoral compressive forces following ACLR can slow the progression of joint degeneration in this population. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:2007–2014, 2012en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherPatella Tendon Orientationen_US
dc.subject.otherOsteoarthritisen_US
dc.subject.otherEMG‐Driven Modelen_US
dc.subject.otherMRIen_US
dc.subject.otherMuscle Volumeen_US
dc.titleGreater muscle co‐contraction results in increased tibiofemoral compressive forces in females who have undergone anterior cruciate ligament reconstructionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Kinesiology, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDivision of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, Californiaen_US
dc.contributor.affiliationotherSensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinoisen_US
dc.contributor.affiliationotherDepartment of Physical Medicine and Rehabilitation, Northwestern University, Evanston, Illinoisen_US
dc.contributor.affiliationotherDepartment of Radiology, University of Southern California, Los Angeles, Californiaen_US
dc.contributor.affiliationotherDivision of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California. T: 323‐442‐1928; F: 323‐442‐1515en_US
dc.identifier.pmid22730173en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94246/1/22176_ftp.pdf
dc.identifier.doi10.1002/jor.22176en_US
dc.identifier.sourceJournal of Orthopaedic Researchen_US
dc.identifier.citedreferenceLloyd DG, Besier TF. 2003. An EMG‐driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech 36: 765 – 776.en_US
dc.identifier.citedreferencePodraza JT, White SC. 2010. Effect of knee flexion angle on ground reaction forces, knee moments and muscle co‐contraction during an impact‐like deceleration landing: implications for the non‐contact mechanism of ACL injury. Knee 17: 291 – 295.en_US
dc.identifier.citedreferenceWolf A, Raiss RX, Steinmeyer J. 2003. Fibronectin metabolism of cartilage explants in response to the frequency of intermittent loading. J Orthop Res 21: 1081 – 1089.en_US
dc.identifier.citedreferenceClements KM, Bee ZC, Crossingham GV, et al. 2001. How severe must repetitive loading be to kill chondrocytes in articular cartilage? Osteoarthritis Cartilage 9: 499 – 507.en_US
dc.identifier.citedreferenceChen CT, Burton‐Wurster N, Lust G, et al. 1999. Compositional and metabolic changes in damaged cartilage are peak‐stress, stress‐rate, and loading‐duration dependent. J Orthop Res 17: 870 – 879.en_US
dc.identifier.citedreferenceMcCormack T, Mansour JM. 1998. Reduction in tensile strength of cartilage precedes surface damage under repeated compressive loading in vitro. J Biomech 31: 55 – 61.en_US
dc.identifier.citedreferenceBull FC, Maslin TS, Armstrong T. 2009. Global physical activity questionnaire (GPAQ): nine country reliability and validity study. J Phys Act Health 6: 790 – 804.en_US
dc.identifier.citedreferenceFriederich JA, Brand RA. 1990. Muscle fiber architecture in the human lower limb. J Biomech 23: 91 – 95.en_US
dc.identifier.citedreferenceWickiewicz TL, Roy RR, Powell PL, et al. 1983. Muscle architecture of the human lower limb. Clin Orthop Relat Res 179: 275 – 283.en_US
dc.identifier.citedreferenceDelp SL. 1990. Surgery simulation: a computer‐graphics system to analyze and design musculoskeletal reconstructions of the lower limb. Dissertation, Stanford University, Stanford (CA). 107 p.en_US
dc.identifier.citedreferenceSpector SA, Gardiner PF, Zernicke RF, et al. 1980. Muscle architecture and force–velocity characteristics of cat soleus and medial gastrocnemius: implications for motor control. J Neurophysiol 44: 951 – 960.en_US
dc.identifier.citedreferenceDempster WT. 1955. Space requirements of the seated operator: geometrical, kinematic, and mechanical aspects of the body with special reference to the limbs. Wright‐Patterson Air Force Base, OH: US Air Force: Wright Air Development Center technical report no. 55–159. p 1–241.en_US
dc.identifier.citedreferenceBesier TF, Lloyd DG, Ackland TR. 2003. Muscle activation strategies at the knee during running and cutting maneuvers. Med Sci Sports Exerc 35: 119 – 127.en_US
dc.identifier.citedreferenceLloyd DG, Buchanan TS. 1996. A model of load sharing between muscles and soft tissues at the human knee during static tasks. J Biomech Eng 118: 367 – 376.en_US
dc.identifier.citedreferenceArdern CL, Webster KE, Taylor NF, et al. 2011. Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta‐analysis of the state of play. Br J Sports Med 45: 596 – 606.en_US
dc.identifier.citedreferenceOiestad BE, Engebretsen L, Storheim K, et al. 2009. Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am J Sports Med 37: 1434 – 1443.en_US
dc.identifier.citedreferenceChappell JD, Herman DC, Knight BS, et al. 2005. Effect of fatigue on knee kinetics and kinematics in stop‐jump tasks. Am J Sports Med 33: 1022 – 1029.en_US
dc.identifier.citedreferenceErdemir A, McLean S, Herzog W, et al. 2007. Model‐based estimation of muscle forces exerted during movements. Clin Biomech (Bristol, Avon) 22: 131 – 154.en_US
dc.identifier.citedreferenceLi G, Kaufman KR, Chao EY, et al. 1999. Prediction of antagonistic muscle forces using inverse dynamic optimization during flexion/extension of the knee. J Biomech Eng 121: 316 – 322.en_US
dc.identifier.citedreferenceMcLean SG, Su A, van den Bogert AJ. 2003. Development and validation of a 3‐D model to predict knee joint loading during dynamic movement. J Biomech Eng 125: 864 – 874.en_US
dc.identifier.citedreferenceTsai LC, Colletti PM, Powers CM. 2012. Magnetic resonance imaging‐measured muscle parameters improved knee moment prediction of an EMG‐driven model. Med Sci Sports Exerc 44: 305 – 312.en_US
dc.identifier.citedreferenceGeorgoulis AD, Ristanis S, Papadonikolakis A, et al. 2005. Electromechanical delay of the knee extensor muscles is not altered after harvesting the patellar tendon as a graft for ACL reconstruction: implications for sports performance. Knee Surg Sports Traumatol Arthrosc 13: 437 – 443.en_US
dc.identifier.citedreferenceKoo TK, Mak AF. 2005. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow. J Electromyogr Kinesiol 15: 12 – 26.en_US
dc.identifier.citedreferenceBesier TF, Fredericson M, Gold GE, et al. 2009. Knee muscle forces during walking and running in patellofemoral pain patients and pain‐free controls. J Biomech 42: 898 – 905.en_US
dc.identifier.citedreferenceWinby CR, Lloyd DG, Besier TF, et al. 2009. Muscle and external load contribution to knee joint contact loads during normal gait. J Biomech 42: 2294 – 2300.en_US
dc.identifier.citedreferenceBuff HU, Jones LC, Hungerford DS. 1988. Experimental determination of forces transmitted through the patello‐femoral joint. J Biomech 21: 17 – 23.en_US
dc.identifier.citedreferenceHuberti HH, Hayes WC, Stone JL, et al. 1984. Force ratios in the quadriceps tendon and ligamentum patellae. J Orthop Res 2: 49 – 54.en_US
dc.identifier.citedreferenceAgel J, Arendt EA, Bershadsky B. 2005. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13‐year review. Am J Sports Med 33: 524 – 530.en_US
dc.identifier.citedreferenceGottlob CA, Baker CL, Jr., Pellissier JM, et al. 1999. Cost effectiveness of anterior cruciate ligament reconstruction in young adults. Clin Orthop Relat Res 367: 272 – 282.en_US
dc.identifier.citedreferencePinczewski LA, Lyman J, Salmon LJ, et al. 2007. A 10‐year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am J Sports Med 35: 564 – 574.en_US
dc.identifier.citedreferenceSajovic M, Vengust V, Komadina R, et al. 2006. A prospective, randomized comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: five‐year follow‐up. Am J Sports Med 34: 1933 – 1940.en_US
dc.identifier.citedreferenceFerber R, Osternig LR, Woollacott MH, et al. 2002. Gait mechanics in chronic ACL deficiency and subsequent repair. Clin Biomech (Bristol, Avon) 17: 274 – 285.en_US
dc.identifier.citedreferenceOrtiz A, Olson S, Libby CL, et al. 2008. Landing mechanics between noninjured women and women with anterior cruciate ligament reconstruction during 2 jump tasks. Am J Sports Med 36: 149 – 157.en_US
dc.identifier.citedreferenceVairo GL, Myers JB, Sell TC, et al. 2008. Neuromuscular and biomechanical landing performance subsequent to ipsilateral semitendinosus and gracilis autograft anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16: 2 – 14.en_US
dc.identifier.citedreferenceLiu W, Maitland ME. 2000. The effect of hamstring muscle compensation for anterior laxity in the ACL‐deficient knee during gait. J Biomech 33: 871 – 879.en_US
dc.identifier.citedreferenceLewek M, Rudolph K, Axe M, et al. 2002. The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 17: 56 – 63.en_US
dc.identifier.citedreferenceWebster KE, Gonzalez‐Adrio R, Feller JA. 2004. Dynamic joint loading following hamstring and patellar tendon anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12: 15 – 21.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.