Show simple item record

Estradiol acts during a post‐pubertal sensitive period to shorten free‐running circadian period in male Octodon degus

dc.contributor.authorHummer, Daniel L.en_US
dc.contributor.authorPeckham, Elizabeth M.en_US
dc.contributor.authorLee, Theresa M.en_US
dc.date.accessioned2012-11-07T17:04:32Z
dc.date.available2013-11-15T16:44:23Zen_US
dc.date.issued2012-10en_US
dc.identifier.citationHummer, Daniel L.; Peckham, Elizabeth M.; Lee, Theresa M. (2012). "Estradiol acts during a post‐pubertal sensitive period to shorten free‐running circadian period in male Octodon degus ." European Journal of Neuroscience 36(8). <http://hdl.handle.net/2027.42/94248>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94248
dc.description.abstractThe free‐running circadian period is approximately 30 min shorter in adult male than in adult female Octodon degus . The sex difference emerges after puberty, resulting from a shortened free‐running circadian period in males. Castration before puberty prevents the emergence of the sex difference, but it is not a function of circulating gonadal hormones as such, because castration later in life does not affect free‐running circadian period. The aim of this study was to determine whether or not the shortening of the free‐running circadian period in male degus results from exposure to gonadal hormones after puberty. We hypothesized that masculinization of the circadian period results from an organizational effect of androgen exposure during a post‐pubertal sensitive period. Male degus were castrated before puberty and implanted with capsules filled with dihydrotestosterone (DHT), 17β‐estradiol (E2) or empty capsules at one of three ages: peri‐puberty (2–7 months), post‐puberty (7–12 months), or adulthood (14–19 months). Long‐term exposure to DHT or E2 did not result in a shortened free‐running circadian period when administered at 2–7 or 14–19 months of age. However, E2 treatment from 7 to 12 months of age decreased the free‐running circadian period in castrated males. This result was replicated in a subsequent experiment in which E2 treatment was limited to 8–12 months of age. E2 treatment at 7–12 months of age had no effect on the free‐running circadian period in ovariectomized females. Thus, there appears to be a post‐pubertal sensitive period for sexual differentiation of the circadian system of degus, during which E2 exposure decreases the free‐running circadian period in males. These data demonstrate that gonadal hormones can act during adolescent development to permanently alter the circadian system. The administration of estradiol during a sensitive period of post‐pubertal development decreases the free‐running circadian period of males but not females, resulting in a permanent sexual dimorphism in the circadian timekeeping mechanism of Octodon degus . These data demonstrate that gonadal hormones can act during adolescent development to permanently alter the circadian system.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.subject.otherAdolescenceen_US
dc.subject.otherSCNen_US
dc.subject.otherSensitive Perioden_US
dc.subject.otherSexual Dimorphismen_US
dc.subject.otherOrganizational Effectsen_US
dc.titleEstradiol acts during a post‐pubertal sensitive period to shorten free‐running circadian period in male Octodon degusen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Psychology, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumReproductive Sciences and Neuroscience Programs, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Psychology, Center for Behavioral Neuroscience, Morehouse College, 830 Westview Dr. SW, Atlanta, GA 30314, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94248/1/ejn8228.pdf
dc.identifier.doi10.1111/j.1460-9568.2012.08228.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceRichards, M.P. ( 1966 ) Activity measured by running wheels and observation during the oestrous cycle, pregnancy and pseudopregnancy in the golden hamster. Anim. Behav., 14, 450 – 458.en_US
dc.identifier.citedreferenceNakamura, T.J., Shinohara, K., Funabashi, T. & Kimura, F. ( 2001 ) Effect of estrogen on the expression of Cry1 and Cry2 mRNAs in the suprachiasmatic nucleus of female rats. Neurosci. Res., 41, 251 – 255.en_US
dc.identifier.citedreferenceNakamura, T.J., Moriya, T., Inoue, S., Shimazoe, T., Watanabe, S., Ebihara, S. & Shinohara, K. ( 2005 ) Estrogen differentially regulates expression of Per1 and Per2 genes between central and peripheral clocks and between reproductive and nonreproductive tissues in female rats. J. Neurosci. Res., 82, 622 – 630.en_US
dc.identifier.citedreferenceNakamura, T.J., Sellix, M.T., Menaker, M. & Block, G.D. ( 2008 ) Estrogen directly modulates circadian rhythms of PER2 expression in the uterus. Am. J. Physiol. Endocrinol. Metab., 295, E1025 – E1031.en_US
dc.identifier.citedreferenceOvtscharoff, W. Jr & Braun, K. ( 2001 ) Maternal separation and social isolation modulate the postnatal development of synaptic composition in the infralimbic cortex of Octodon degus. Neuroscience, 104, 33 – 40.en_US
dc.identifier.citedreferencePfaff, D. & Keiner, M. ( 1973 ) Atlas of estradiol‐concentrating cells in the central nervous system of the female rat. J. Comp. Neurol., 151, 121 – 158.en_US
dc.identifier.citedreferencePittendrigh, C.S. & Daan, S. ( 1976 ) The stability and lability of spontaneous frequency. J. Comp. Physiol., 106, 223 – 252.en_US
dc.identifier.citedreferencePoeggel, G., Haase, C., Gulyaeva, N. & Braun, K. ( 2000 ) Quantitative changes in reduced nicotinamide adenine dinucleotide phosphate‐diaphorase‐reactive neurons in the brain of Octodon degus after periodic maternal separation and early social isolation. Neuroscience, 99, 381 – 387.en_US
dc.identifier.citedreferencePoeggel, G., Nowicki, L. & Braun, K. ( 2003 ) Early social deprivation alters monoaminergic afferents in the orbital prefrontal cortex of Octodon degus. Neuroscience, 116, 617 – 620.en_US
dc.identifier.citedreferencePoeggel, G., Nowicki, L. & Braun, K. ( 2005 ) Early social environment interferes with the development of NADPH‐diaphorase‐reactive neurons in the rodent orbital prefrontal cortex. J. Neurobiol., 62, 42 – 46.en_US
dc.identifier.citedreferencePrimus, R.J. & Kellogg, C.K. ( 1990 ) Gonadal hormones during puberty organize environment‐related social interaction in the male rat. Horm. Behav., 24, 311 – 323.en_US
dc.identifier.citedreferenceRoenneberg, T., Kuehnle, T., Pramstaller, P.P., Ricken, J., Havel, M., Guth, A. & Merrow, M. ( 2004 ) A marker for the end of adolescence. Curr. Biol., 14, R1038 – R1039.en_US
dc.identifier.citedreferenceSchulz, K.M. & Sisk, C.L. ( 2006 ) Pubertal hormones, the adolescent brain, and the maturation of social behaviors: lessons from the Syrian hamster. Mol. Cell. Endocrinol., 254–255, 120 – 126.en_US
dc.identifier.citedreferenceSchulz, K.M., Richardson, H.N., Zehr, J.L., Osetek, A.J., Menard, T.A. & Sisk, C.L. ( 2004 ) Gonadal hormones masculinize and defeminize reproductive behaviors during puberty in the male Syrian hamster. Horm. Behav., 45, 242 – 249.en_US
dc.identifier.citedreferenceSchulz, K.M., Menard, T.A., Smith, D.A., Albers, H.E. & Sisk, C.L. ( 2006 ) Testicular hormone exposure during adolescence organizes flank‐marking behavior and vasopressin receptor binding in the lateral septum. Horm. Behav., 50, 477 – 483.en_US
dc.identifier.citedreferenceShinohara, K., Funabashi, T., Mitushima, D. & Kimura, F. ( 2000 ) Effects of estrogen on the expression of connexin32 and connexin43 mRNAs in the suprachiasmatic nucleus of female rats. Neurosci. Lett., 286, 107 – 110.en_US
dc.identifier.citedreferenceShinohara, K., Funabashi, T., Nakamura, T.J. & Kimura, F. ( 2001 ) Effects of estrogen and progesterone on the expression of connexin‐36 mRNA in the suprachiasmatic nucleus of female rats. Neurosci. Lett., 309, 37 – 40.en_US
dc.identifier.citedreferenceShughrue, P., Scrimo, P., Lane, M., Askew, R. & Merchenthaler, I. ( 1997a ) The distribution of estrogen receptor‐beta mRNA in forebrain regions of the estrogen receptor‐alpha knockout mouse. Endocrinology, 138, 5649 – 5652.en_US
dc.identifier.citedreferenceShughrue, P.J., Lane, M.V. & Merchenthaler, I. ( 1997b ) Comparative distribution of estrogen receptor‐alpha and ‐beta mRNA in the rat central nervous system. J. Comp. Neurol., 388, 507 – 525.en_US
dc.identifier.citedreferenceSibug, R.M., Stumpf, W.E., Shughrue, P.J., Hochberg, R.B. & Drews, U. ( 1991 ) Distribution of estrogen target sites in the 2‐day‐old mouse forebrain and pituitary gland during the ‘critical period’ of sexual differentiation. Brain Res. Dev. Brain Res., 61, 11 – 22.en_US
dc.identifier.citedreferenceSu, J.D., Qiu, J., Zhong, Y.P. & Chen, Y.Z. ( 2001 ) Expression of estrogen receptor‐alpha and ‐beta immunoreactivity in the cultured neonatal suprachiasmatic nucleus: with special attention to GABAergic neurons. NeuroReport, 12, 1955 – 1959.en_US
dc.identifier.citedreferenceTakahashi, J.S. & Menaker, M. ( 1980 ) Interaction of estradiol and progesterone: effects on circadian locomotor rhythm of female golden hamsters. Am. J. Physiol., 239, R497 – R504.en_US
dc.identifier.citedreferenceTakamata, A., Torii, K., Miyake, K. & Morimoto, K. ( 2011 ) Chronic oestrogen replacement in ovariectomised rats attenuates food intake and augments c‐Fos expression in the suprachiasmatic nucleus specifically during the light phase. Br. J. Nutr., 106, 1283 – 1289.en_US
dc.identifier.citedreferenceVida, B., Hrabovszky, E., Kalamatianos, T., Coen, C.W., Liposits, Z. & Kallo, I. ( 2008 ) Oestrogen receptor alpha and beta immunoreactive cells in the suprachiasmatic nucleus of mice: distribution, sex differences and regulation by gonadal hormones. J. Neuroendocrinol., 20, 1270 – 1277.en_US
dc.identifier.citedreferenceZucker, I., Fitzgerald, K.M. & Morin, L.P. ( 1980 ) Sex differentiation of the circadian system in the golden hamster. Am. J. Physiol., 238, R97 – R101.en_US
dc.identifier.citedreferenceAlbers, H.E. ( 1981 ) Gonadal hormones organize and modulate the circadian system of the rat. Am. J. Physiol., 241, R62 – R66.en_US
dc.identifier.citedreferenceAlbers, H.E., Gerall, A.A. & Axelson, J.F. ( 1981 ) Effect of reproductive state on circadian periodicity in the rat. Physiol. Behav., 26, 21 – 25.en_US
dc.identifier.citedreferenceAxelson, J.F., Gerall, A.A. & Albers, H.E. ( 1981 ) Effect of progesterone on the estrous activity cycle of the rat. Physiol. Behav., 26, 631 – 635.en_US
dc.identifier.citedreferenceCintra, A., Fuxe, K., Harfstrand, A., Agnati, L.F., Miller, L.S., Greene, J.L. & Gustafsson, J.‐A. ( 1986 ) On the cellular localization and distribution of estrogen receptors in the rat tel‐ and diencephalon using monoclonal antibodies to human estrogen receptor. Neurochem. Int., 8, 587 – 595.en_US
dc.identifier.citedreferenceConover, W.J. & Iman, R.L. ( 1981 ) Rank transformations as a bridge between parametric and nonparametric statistics. Am. Stat., 35, 124 – 129.en_US
dc.identifier.citedreferenceDaan, S., Damassa, D., Pittendrigh, C.S. & Smith, E.R. ( 1975 ) An effect of castration and testosterone replacement on a circadian pacemaker in mice ( Mus musculus ). Proc. Natl. Acad. Sci. USA, 72, 3744 – 3747.en_US
dc.identifier.citedreferenceFatehi, M. & Fatehi‐Hassanabad, Z. ( 2008 ) Effects of 17beta‐estradiol on neuronal cell excitability and neurotransmission in the suprachiasmatic nucleus of rat. Neuropsychopharmacol., 33, 1354 – 1364.en_US
dc.identifier.citedreferenceGundlah, C., Kohama, S.G., Mirkes, S.J., Garyfallou, V.T., Urbanski, H.F. & Bethea, C.L. ( 2000 ) Distribution of estrogen receptor beta (ERbeta) mRNA in hypothalamus, midbrain and temporal lobe of spayed macaque: continued expression with hormone replacement. Brain Res. Mol. Brain Res., 76, 191 – 204.en_US
dc.identifier.citedreferenceHagenauer, M.H., Ku, J.H. & Lee, T.M. ( 2011 ) Chronotype changes during puberty depend on gonadal hormones in the slow‐developing rodent, Octodon degus. Horm. Behav., 60, 37 – 45.en_US
dc.identifier.citedreferenceHelmeke, C., Ovtscharoff, W. Jr, Poeggel, G. & Braun, K. ( 2001a ) Juvenile emotional experience alters synaptic inputs on pyramidal neurons in the anterior cingulate cortex. Cereb. Cortex, 11, 717 – 727.en_US
dc.identifier.citedreferenceHelmeke, C., Poeggel, G. & Braun, K. ( 2001b ) Differential emotional experience induces elevated spine densities on basal dendrites of pyramidal neurons in the anterior cingulate cortex of Octodon degus. Neuroscience, 104, 927 – 931.en_US
dc.identifier.citedreferenceHier, D.B. & Crowley, W.F. Jr ( 1982 ) Spatial ability in androgen‐deficient men. N. Engl. J. Med., 306, 1202 – 1205.en_US
dc.identifier.citedreferenceHileman, S.M., Handa, R.J. & Jackson, G.L. ( 1999 ) Distribution of estrogen receptor‐beta messenger ribonucleic acid in the male sheep hypothalamus. Biol. Reprod., 60, 1279 – 1284.en_US
dc.identifier.citedreferenceHummer, D.L., Jechura, T.J., Mahoney, M.M. & Lee, T.M. ( 2007 ) Gonadal hormone effects on entrained and free‐running circadian activity rhythms in the developing diurnal rodent Octodon degus. Am. J. Physiol. Regul. Integr. Comp. Physiol., 292, R586 – R597.en_US
dc.identifier.citedreferenceIwahana, E., Karatsoreos, I., Shibata, S. & Silver, R. ( 2008 ) Gonadectomy reveals sex differences in circadian rhythms and suprachiasmatic nucleus androgen receptors in mice. Horm. Behav., 53, 422 – 430.en_US
dc.identifier.citedreferenceJechura, T.J., Walsh, J.M. & Lee, T.M. ( 2000 ) Testicular hormones modulate circadian rhythms of the diurnal rodent, Octodon degus. Horm. Behav., 38, 243 – 249.en_US
dc.identifier.citedreferenceKaratsoreos, I.N. & Silver, R. ( 2007 ) The neuroendocrinology of the suprachiasmatic nucleus as a conductor of body time in mammals. Endocrinology, 148, 5640 – 5647.en_US
dc.identifier.citedreferenceKaratsoreos, I.N., Wang, A., Sasanian, J. & Silver, R. ( 2007 ) A role for androgens in regulating circadian behavior and the suprachiasmatic nucleus. Endocrinology, 148, 5487 – 5495.en_US
dc.identifier.citedreferenceKriegsfeld, L.J. & Silver, R. ( 2006 ) The regulation of neuroendocrine function: timing is everything. Horm. Behav., 49, 557 – 574.en_US
dc.identifier.citedreferenceKruijver, F.P. & Swaab, D.F. ( 2002 ) Sex hormone receptors are present in the human suprachiasmatic nucleus. Neuroendocrinology, 75, 296 – 305.en_US
dc.identifier.citedreferenceLabyak, S.E. & Lee, T.M. ( 1995 ) Estrus‐ and steroid‐induced changes in circadian rhythms in a diurnal rodent, Octodon degus. Physiol. Behav., 58, 573 – 585.en_US
dc.identifier.citedreferenceLee, T.M. & Labyak, S.E. ( 1997 ) Free‐running rhythms and light‐ and dark‐pulse phase response curves for diurnal Octodon degus (Rodentia). Am. J. Physiol., 273, R278 – R286.en_US
dc.identifier.citedreferenceMahoney, M.M., Ramanathan, C., Hagenauer, M.H., Thompson, R.C., Smale, L. & Lee, T. ( 2009 ) Daily rhythms and sex differences in vasoactive intestinal polypeptide, VIPR2 receptor and arginine vasopressin mRNA in the suprachiasmatic nucleus of a diurnal rodent, Arvicanthis niloticus. Eur. J. Neurosci., 30, 1537 – 1543.en_US
dc.identifier.citedreferenceMahoney, M.M., Rossi, B.V., Hagenauer, M.H. & Lee, T.M. ( 2011 ) Characterization of the estrous cycle in Octodon degus. Biol. Reprod., 84, 664 – 671.en_US
dc.identifier.citedreferenceMitra, S.W., Hoskin, E., Yudkovitz, J., Pear, L., Wilkinson, H.A., Hayashi, S., Pfaff, D.W., Ogawa, S., Rohrer, S.P., Schaeffer, J.M., McEwen, B.S. & Alves, S.E. ( 2003 ) Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology, 144, 2055 – 2067.en_US
dc.identifier.citedreferenceMorin, L.P., Fitzgerald, K.M. & Zucker, I. ( 1977 ) Estradiol shortens the period of hamster circadian rhythms. Science, 196, 305 – 307.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.