Show simple item record

Chaperone discovery

dc.contributor.authorQuan, Shuen_US
dc.contributor.authorBardwell, James C. A.en_US
dc.date.accessioned2012-11-07T17:04:32Z
dc.date.available2014-01-07T14:51:07Zen_US
dc.date.issued2012-11en_US
dc.identifier.citationQuan, Shu; Bardwell, James C. A. (2012). "Chaperone discovery." BioEssays 34(11): 973-981. <http://hdl.handle.net/2027.42/94250>en_US
dc.identifier.issn0265-9247en_US
dc.identifier.issn1521-1878en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94250
dc.description.abstractMolecular chaperones assist de novo protein folding and facilitate the refolding of stress‐denatured proteins. The molecular chaperone concept was coined nearly 35 years ago, and since then, tremendous strides have been made in understanding how these factors support protein folding. Here, we focus on how various chaperone proteins were first identified to play roles in protein folding. Examples are used to illustrate traditional routes of chaperone discovery and point out their advantages and limitations. Recent advances, including the development of folding biosensors and promising methods for the stabilization of proteins in vivo, provide new routes for chaperone discovery. With new methods of chaperone discovery, the question as to whether we have discovered all the chaperones that exist is very pertinent: there may well be important new surprises on the horizon. The image depicts one method of monitoring protein folding, namely the coupling of protein folding to the host stress response. This review cover is the past, present, and future of chaperone discovery.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherHsp110en_US
dc.subject.otherProtein Foldingen_US
dc.subject.otherChaperone Discoveryen_US
dc.subject.otherHsp60en_US
dc.subject.otherHsp70en_US
dc.subject.otherHsp90en_US
dc.titleChaperone discoveryen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationumDepartment of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USAen_US
dc.identifier.pmid22968800en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94250/1/973_ftp.pdf
dc.identifier.doi10.1002/bies.201200059en_US
dc.identifier.sourceBioEssaysen_US
dc.identifier.citedreferenceKawasaki M, Inagaki F. 2001. Random PCR‐based screening for soluble domains using green fluorescent protein. Biochem Bioph Res Co 280: 842 – 4.en_US
dc.identifier.citedreferenceCabantous S, Terwilliger TC, Waldo GS. 2005. Protein tagging and detection with engineered self‐assembling fragments of green fluorescent protein. Nat Biotechnol 23: 102 – 7.en_US
dc.identifier.citedreferenceCabantous S, Rogers Y, Terwilliger TC, Waldo GS. 2008. New molecular reporters for rapid protein folding assays. PLoS ONE 3: e2387.en_US
dc.identifier.citedreferencePhilipps B, Hennecke J, Glockshuber R. 2003. FRET‐based in vivo screening for protein folding and increased protein stability. J Mol Biol 327: 239 – 49.en_US
dc.identifier.citedreferenceQuan S, Koldewey P, Tapley T, Kirsch N, et al. 2011. Genetic selection designed to stabilize proteins uncovers a chaperone called Spy. Nat Struct Mol Biol 18: 262 – 9.en_US
dc.identifier.citedreferenceCabantous S, Pedelacq JD, Mark BL, Naranjo C, et al. 2005. Recent advances in GFP folding reporter and split‐GFP solubility reporter technologies. Application to improving the folding and solubility of recalcitrant proteins from Mycobacterium tuberculosis. J Struct Funct Genomics 6: 113 – 9.en_US
dc.identifier.citedreferenceLindman S, Hernandez‐Garcia A, Szczepankiewicz O, Frohm B, et al. 2010. In vivo protein stabilization based on fragment complementation and a split GFP system. Proc Natl Acad Sci USA 107: 19826 – 31.en_US
dc.identifier.citedreferenceKim W, Kim Y, Min J, Kim DJ, et al. 2006. A high‐throughput screen for compounds that inhibit aggregation of the Alzheimer's peptide. ACS Chem Biol 1: 461 – 9.en_US
dc.identifier.citedreferenceKostallas G, Samuelson P. 2010. Novel fluorescence‐assisted whole‐cell assay for engineering and characterization of proteases and their substrates. Appl Environ Microbiol 76: 7500 – 8.en_US
dc.identifier.citedreferenceChien CT, Bartel PL, Sternglanz R, Fields S. 1991. The 2‐hybrid system – a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci USA 88: 9578 – 82.en_US
dc.identifier.citedreferenceBarakat NH, Barakat NH, Carmody LJ, Love JJ. 2007. Exploiting elements of transcriptional machinery to enhance protein stability. J Mol Biol 366: 103 – 16.en_US
dc.identifier.citedreferenceBarakat NH, Barakat NH, Love JJ. 2010. Combined use of experimental and computational screens to characterize protein stability. Protein Eng Des Sel 23: 799 – 807.en_US
dc.identifier.citedreferenceFisher AC, Kim W, DeLisa MP. 2006. Genetic selection for protein solubility enabled by the folding quality control feature of the twin‐arginine translocation pathway. Protein Sci 15: 449 – 58.en_US
dc.identifier.citedreferenceLim HK, Mansell TJ, Linderman SW, Fisher AC, et al. 2009. Mining mammalian genomes for folding competent proteins using Tat‐dependent genetic selection in Escherichia coli. Protein Sci 18: 2537 – 49.en_US
dc.identifier.citedreferenceTamura T, Sunryd JC, Hebert DN. 2010. Sorting things out through endoplasmic reticulum quality control. Mol Membr Biol 27: 412 – 27.en_US
dc.identifier.citedreferenceLyngso C, Kjaerulff S, Muller S, Bratt T, et al. 2010. A versatile selection system for folding competent proteins using genetic complementation in a eukaryotic host. Protein Sci 19: 579 – 92.en_US
dc.identifier.citedreferenceJonikas MC, Collins SR, Denic V, Oh E, et al. 2009. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323: 1693 – 7.en_US
dc.identifier.citedreferenceKraft M, Knupfer U, Wenderoth R, Pietschmann P, et al. 2007. An online monitoring system based on a synthetic sigma32‐dependent tandem promoter for visualization of insoluble proteins in the cytoplasm of Escherichia coli. Appl Microbiol Biotechnol 75: 397 – 406.en_US
dc.identifier.citedreferenceKraft M, Knupfer U, Wenderoth R, Kacholdt A, et al. 2007. A dual expression platform to optimize the soluble production of heterologous proteins in the periplasm of Escherichia coli. Appl Microbiol Biotechnol 76: 1413 – 22.en_US
dc.identifier.citedreferenceLesley SA, Graziano J, Cho CY, Knuth MW, et al. 2002. Gene expression response to misfolded protein as a screen for soluble recombinant protein. Protein Eng 15: 153 – 60.en_US
dc.identifier.citedreferenceBandyopadhyay A, Saxena K, Kasturia N, Dalal V, et al. 2012. Chemical chaperones assist intracellular folding to buffer mutational variations. Nat Chem Biol 8: 238 – 45.en_US
dc.identifier.citedreferenceZhang S, Binari R, Zhou R, Perrimon N. 2010. A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in Drosophila. Genetics 184: 1165 – 79.en_US
dc.identifier.citedreferenceWang J, Farr GW, Hall DH, Li F, et al. 2009. An ALS‐linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. PLoS Genet 5: e1000350.en_US
dc.identifier.citedreferenceWang JD, Herman C, Tipton KA, Gross CA, et al. 2002. Directed evolution of substrate‐optimized GroEL/S chaperonins. Cell 111: 1027 – 39.en_US
dc.identifier.citedreferenceAponte RA, Zimmermann S, Reinstein J. 2010. Directed evolution of the DnaK chaperone: mutations in the lid domain result in enhanced chaperone activity. J Mol Biol 399: 154 – 67.en_US
dc.identifier.citedreferenceRicharme G, Caldas TD. 1997. Chaperone properties of the bacterial periplasmic substrate‐binding proteins. J Biol Chem 272: 15607 – 12.en_US
dc.identifier.citedreferenceChen B, Retzlaff M, Roos T, Frydman J. 2011. Cellular strategies of protein quality control. Cold Spring Harb Perspect Biol 3: a004374.en_US
dc.identifier.citedreferencede Marco A. 2007. Protocol for preparing proteins with improved solubility by co‐expressing with molecular chaperones in Escherichia coli. Nat Protoc 2: 2632 – 9.en_US
dc.identifier.citedreferencede Marco A, Deuerling E, Mogk A, Tomoyasu T, et al. 2007. Chaperone‐based procedure to increase yields of soluble recombinant proteins produced in E coli. BMC Biotechnol 7: 32.en_US
dc.identifier.citedreferenceHartl FU, Bracher A, Hayer‐Hartl M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475: 324 – 32.en_US
dc.identifier.citedreferenceKolaj O, Spada S, Robin S, Wall JG. 2009. Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb Cell Fact 8: 9.en_US
dc.identifier.citedreferenceFeder ME, Hofmann GE. 1999. Heat‐shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61: 243 – 82.en_US
dc.identifier.citedreferenceVabulas RM, Raychaudhuri S, Hayer‐Hartl M, Hartl FU. 2010. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb Perspect Biol 2: a004390.en_US
dc.identifier.citedreferencePicard D. 2002. Heat‐shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59: 1640 – 8.en_US
dc.identifier.citedreferenceBardwell JC, Craig EA. 1984. Major heat shock gene of Drosophila and the Escherichia coli heat‐inducible dnaK gene are homologous. Proc Natl Acad Sci USA 81: 848 – 52.en_US
dc.identifier.citedreferenceBardwell JCA, Craig EA. 1987. Eukaryotic M r 83,000 heat shock protein has a homolog in Escherichia coli. Proc Natl Acad Sci USA 84: 5177 – 81.en_US
dc.identifier.citedreferenceCowing DW, Bardwell JCA, Craig EA, Woolford C, et al. 1985. Consensus sequence for Escherichia coli heat‐shock gene promoters. Proc Natl Acad Sci USA 82: 2679 – 83.en_US
dc.identifier.citedreferenceLindquist S, Craig EA. 1988. The heat‐shock proteins. Annu Rev Genet 22: 631 – 77.en_US
dc.identifier.citedreferenceZylicz M, LeBowitz JH, McMacken R, Georgopoulos C. 1983. The dnaK protein of Escherichia coli possesses an ATPase and autophosphorylating activity and is essential in an in vitro DNA replication system. Proc Natl Acad Sci USA 80: 6431 – 5.en_US
dc.identifier.citedreferenceWelch WJ, Feramisco JR. 1984. Nuclear and nucleolar localization of the 72,000‐dalton heat shock protein in heat‐shocked mammalian cells. J Biol Chem 259: 4501 – 13.en_US
dc.identifier.citedreferenceLewis MJ, Pelham HR. 1985. Involvement of ATP in the nuclear and nucleolar functions of the 70 kd heat shock protein. EMBO J 4: 3137 – 43.en_US
dc.identifier.citedreferencePelham HR. 1986. Speculations on the functions of the major heat shock and glucose‐regulated proteins. Cell 46: 959 – 61.en_US
dc.identifier.citedreferenceGeorgopoulos CP, Hendrix RW, Casjens SR, Kaiser AD. 1973. Host participation in bacteriophage lambda head assembly. J Mol Biol 76: 45 – 60.en_US
dc.identifier.citedreferenceHohn T, Hohn B, Engel A, Wurtz M, et al. 1979. Isolation and characterization of the host protein groE involved in bacteriophage lambda assembly. J Mol Biol 129: 359 – 73.en_US
dc.identifier.citedreferenceBarraclough R, Ellis RJ. 1980. Protein synthesis in chloroplasts. IX. Assembly of newly‐synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim Biophys Acta 608: 19 – 31.en_US
dc.identifier.citedreferenceHemmingsen SM, Woolford C, van der Vies SM, Tilly K, et al. 1988. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333: 330 – 4.en_US
dc.identifier.citedreferenceEllis J. 1987. Proteins as molecular chaperones. Nature 328: 378 – 9.en_US
dc.identifier.citedreferenceGoloubinoff P, Christeller JT, Gatenby AA, Lorimer GH. 1989. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg‐ATP. Nature 342: 884 – 9.en_US
dc.identifier.citedreferenceCheng MY, Hartl FU, Martin J, Pollock RA, et al. 1989. Mitochondrial heat‐shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337: 620 – 5.en_US
dc.identifier.citedreferenceOstermann J, Horwich AL, Neupert W, Hartl FU. 1989. Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 341: 125 – 30.en_US
dc.identifier.citedreferenceMarini I, Moschini R, Del Corso A, Mura U. 2005. Chaperone‐like features of bovine serum albumin: a comparison with alpha‐crystallin. Cell Mol Life Sci 62: 3092 – 9.en_US
dc.identifier.citedreferenceEllis RJ. 2011. Protein aggregation: opposing effects of chaperones and crowding In Wyttenbach A, O'Connor V, eds; Folding for the Synapse. New York, USA: Springer. p. 9 – 34.en_US
dc.identifier.citedreferencePearl LH, Prodromou C. 2006. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75: 271 – 94.en_US
dc.identifier.citedreferenceYebenes H, Mesa P, Munoz IG, Montoya G, et al. 2011. Chaperonins: two rings for folding. Trends Biochem Sci 36: 424 – 32.en_US
dc.identifier.citedreferenceYoung JC. 2010. Mechanisms of the Hsp70 chaperone system. Biochem Cell Biol 88: 291 – 300.en_US
dc.identifier.citedreferenceRassow J, vonAhsen O, Bomer U, Pfanner N. 1997. Molecular chaperones: towards a characterization of the heat‐shock protein 70 family. Trends Cell Biol 7: 129 – 33.en_US
dc.identifier.citedreferenceVoos W, Rottgers K. 2002. Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim Biophys Acta 1592: 51 – 62.en_US
dc.identifier.citedreferenceWerner‐Washburne M, Craig EA. 1989. Expression of members of the Saccharomyces cerevisiae Hsp70 multigene family. Genome 31: 684 – 9.en_US
dc.identifier.citedreferenceLussier M, White AM, Sheraton J, diPaolo T, et al. 1997. Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147: 435 – 50.en_US
dc.identifier.citedreferenceMaier T, Ferbitz L, Deuerling E, Ban N. 2005. A cradle for new proteins: trigger factor at the ribosome. Curr Opin Struct Biol 15: 204 – 12.en_US
dc.identifier.citedreferenceCrooke E, Wickner W. 1987. Trigger factor: a soluble protein that folds pro‐OmpA into a membrane‐assembly‐competent form. Proc Natl Acad Sci USA 84: 5216 – 20.en_US
dc.identifier.citedreferenceCrooke E, Guthrie B, Lecker S, Lill R, et al. 1988. ProOmpA is stabilized for membrane translocation by either purified E. coli trigger factor or canine signal recognition particle. Cell 54: 1003 – 11.en_US
dc.identifier.citedreferenceHesterkamp T, Hauser S, Lutcke H, Bukau B. 1996. Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc Natl Acad Sci USA 93: 4437 – 41.en_US
dc.identifier.citedreferenceValent QA, Kendall DA, High S, Kusters R, et al. 1995. Early events in preprotein recognition in E. coli: interaction of SRP and trigger factor with nascent polypeptides. EMBO J 14: 5494 – 505.en_US
dc.identifier.citedreferenceJarchow S, Luck C, Gorg A, Skerra A. 2008. Identification of potential substrate proteins for the periplasmic Escherichia coli chaperone Skp. Proteomics 8: 4987 – 94.en_US
dc.identifier.citedreferenceChen R, Henning U. 1996. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol Microbiol 19: 1287 – 94.en_US
dc.identifier.citedreferenceMatsuyama S, Tajima T, Tokuda H. 1995. A novel periplasmic carrier protein involved in the sorting and transport of Escherichia coli lipoproteins destined for the outer membrane. EMBO J 14: 3365 – 72.en_US
dc.identifier.citedreferenceKitagawa M, Matsumura Y, Tsuchido T. 2000. Small heat shock proteins, IbpA and IbpB, are involved in resistances to heat and superoxide stresses in Escherichia coli. FEMS Microbiol Lett 184: 165 – 71.en_US
dc.identifier.citedreferenceAllen SP, Polazzi JO, Gierse JK, Easton AM. 1992. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J Bacteriol 174: 6938 – 47.en_US
dc.identifier.citedreferenceLaskowska E, Wawrzynow A, Taylor A. 1996. IbpA and IbpB, the new heat‐shock proteins, bind to endogenous Escherichia coli proteins aggregated intracellularly by heat shock. Biochimie 78: 117 – 22.en_US
dc.identifier.citedreferenceJakob U, Muse W, Eser M, Bardwell JC. 1999. Chaperone activity with a redox switch. Cell 96: 341 – 52.en_US
dc.identifier.citedreferenceMujacic M, Bader MW, Baneyx F. 2004. Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK‐DnaJ‐GrpE system in the management of protein misfolding under severe stress conditions. Mol Microbiol 51: 849 – 59.en_US
dc.identifier.citedreferenceSastry MS, Korotkov K, Brodsky Y, Baneyx F. 2002. Hsp31, the Escherichia coli yedU gene product, is a molecular chaperone whose activity is inhibited by ATP at high temperatures. J Biol Chem 277: 46026 – 34.en_US
dc.identifier.citedreferenceTormo A, Almiron M, Kolter R. 1990. surA, an Escherichia coli gene essential for survival in stationary phase. J Bacteriol 172: 4339 – 47.en_US
dc.identifier.citedreferenceLazar SW, Kolter R. 1996. SurA assists the folding of Escherichia coli outer membrane proteins. J Bacteriol 178: 1770 – 3.en_US
dc.identifier.citedreferenceMissiakas D, Betton JM, Raina S. 1996. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol 21: 871 – 84.en_US
dc.identifier.citedreferenceWaterman SR, Small PL. 1996. Identification of sigma S‐dependent genes associated with the stationary‐phase acid‐resistance phenotype of Shigella flexneri. Mol Microbiol 21: 925 – 40.en_US
dc.identifier.citedreferenceHong W, Jiao W, Hu J, Zhang J, et al. 2005. Periplasmic protein HdeA exhibits chaperone‐like activity exclusively within stomach pH range by transforming into disordered conformation. J Biol Chem 280: 27029 – 34.en_US
dc.identifier.citedreferenceTapley TL, Korner JL, Barge MT, Hupfeld J, et al. 2009. Structural plasticity of an acid‐activated chaperone allows promiscuous substrate binding. Proc Natl Acad Sci USA 106: 5557 – 62.en_US
dc.identifier.citedreferenceTucker DL, Tucker N, Conway T. 2002. Gene expression profiling of the pH response in Escherichia coli. J Bacteriol 184: 6551 – 8.en_US
dc.identifier.citedreferenceSpiess C, Beil A, Ehrmann M. 1999. A temperature‐dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97: 339 – 47.en_US
dc.identifier.citedreferenceKrojer T, Sawa J, Schafer E, Saibil HR, et al. 2008. Structural basis for the regulated protease and chaperone function of DegP. Nature 453: 885 – 90.en_US
dc.identifier.citedreferenceRichter K, Haslbeck M, Buchner J. 2010. The heat shock response: life on the verge of death. Mol Cell 40: 253 – 66.en_US
dc.identifier.citedreferenceWelker S, Rudolph B, Frenzel E, Hagn F, et al. 2010. Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function. Mol Cell 39: 507 – 20.en_US
dc.identifier.citedreferenceKorber P, Zander T, Herschlag D, Bardwell JCA. 1999. A new heat shock protein that binds nucleic acids. J Biol Chem 274: 249 – 56.en_US
dc.identifier.citedreferenceStaker BL, Korber P, Bardwell JCA, Saper MA. 2000. Structure of Hsp15 reveals a novel RNA‐binding motif. EMBO J 19: 749 – 57.en_US
dc.identifier.citedreferenceKorber P, Stahl JM, Nierhaus KH, Bardwell JC. 2000. Hsp15: a ribosome‐associated heat shock protein. EMBO J 19: 741 – 8.en_US
dc.identifier.citedreferenceZhao RM, Davey M, Hsu YC, Kaplanek P, et al. 2005. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the Hsp90 chaperone. Cell 120: 715 – 27.en_US
dc.identifier.citedreferenceCornvik T, Dahlroth SL, Magnusdottir A, Herman MD, et al. 2005. Colony filtration blot: a new screening method for soluble protein expression in Escherichia coli. Nat Methods 2: 507 – 9.en_US
dc.identifier.citedreferenceTarendeau F, Boudet J, Guilligay D, Mas PJ, et al. 2007. Structure and nuclear import function of the C‐terminal domain of influenza virus polymerase PB2 subunit. Nat Struct Mol Biol 14: 229 – 33.en_US
dc.identifier.citedreferenceAngelini A, Tosi T, Mas P, Acajjaoui S, et al. 2009. Expression of Helicobacter pylori CagA domains by library‐based construct screening. FEBS J 276: 816 – 24.en_US
dc.identifier.citedreferenceHart DJ, Tarendeau F. 2006. Combinatorial library approaches for improving soluble protein expression in Escherichia coli. Acta Crystallogr D 62: 19 – 26.en_US
dc.identifier.citedreferenceWaldo GS, Standish BM, Berendzen J, Terwilliger TC. 1999. Rapid protein‐folding assay using green fluorescent protein. Nat Biotechnol 17: 691 – 5.en_US
dc.identifier.citedreferenceWigley WC, Stidham RD, Smith NM, Hunt JF, et al. 2001. Protein solubility and folding monitored in vivo by structural complementation of a genetic marker protein. Nat Biotechnol 19: 131 – 6.en_US
dc.identifier.citedreferenceMaxwell KL, Mittermaier AK, Forman‐Kay JD, Davidson AR. 1999. A simple in vivo assay for increased protein solubility. Protein Sci 8: 1908 – 11.en_US
dc.identifier.citedreferenceFoit L, Morgan GJ, Kern MJ, Steimer LR, et al. 2009. Optimizing protein stability in vivo. Mol Cell 36: 861 – 71.en_US
dc.identifier.citedreferenceChautard H, Blas‐Galindo E, Menguy T, Grand'Moursel L, et al. 2007. An activity‐independent selection system of thermostable protein variants. Nat Methods 4: 919 – 21.en_US
dc.identifier.citedreferenceLiu JW, Boucher Y, Stokes HW, Ollis DL. 2006. Improving protein solubility: the use of the Escherichia coli dihydrofolate reductase gene as a fusion reporter. Protein Expres Purif 47: 258 – 63.en_US
dc.identifier.citedreferenceDyson MR, Perera RL, Shadbolt SP, Biderman L, et al. 2008. Identification of soluble protein fragments by gene fragmentation and genetic selection. Nucleic Acids Res 36: e51.en_US
dc.identifier.citedreferenceSieber V, Martinez CA, Arnold FH. 2001. Libraries of hybrid proteins from distantly related sequences. Nat Biotechnol 19: 456 – 60.en_US
dc.identifier.citedreferencePedelacq JD, Piltch E, Liong EC, Berendzen J, et al. 2002. Engineering soluble proteins for structural genomics. Nat Biotechnol 20: 927 – 32.en_US
dc.identifier.citedreferenceWaldo GS. 2003. Genetic screens and directed evolution for protein solubility. Curr Opin Chem Biol 7: 33 – 8.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.