Show simple item record

In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen

dc.contributor.authorLangguth, Peteren_US
dc.contributor.authorMarroum, Patricken_US
dc.date.accessioned2012-11-07T17:04:33Z
dc.date.available2013-11-15T16:44:23Zen_US
dc.date.issued2012-10en_US
dc.identifier.citationLangguth, Peter; Marroum, Patrick (2012). " In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen." Biopharmaceutics & Drug Disposition 33(7): 366-377. <http://hdl.handle.net/2027.42/94252>en_US
dc.identifier.issn0142-2782en_US
dc.identifier.issn1099-081Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94252
dc.description.abstractThe FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate‐release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH of 6.0. Further the experimental dissolution of ibuprofen tablets in a low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol l ‐1 /pH) was dramatically reduced compared with the dissolution in SIF (the average buffer capacity 12.6 mmol l ‐1 /pH). Thus these predictions for the oral absorption of BCS class II acids indicate that the absorption patterns depend largely on the intestinal pH and buffer strength and must be considered carefully for a bioequivalence test. Simulation software may be a very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. Copyright © 2012 John Wiley & Sons, Ltd.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherDissolution Mediaen_US
dc.subject.otherSimulationen_US
dc.subject.otherGastroPlusen_US
dc.subject.otherWeak Aciden_US
dc.subject.otherIbuprofenen_US
dc.subject.otherKetoprofenen_US
dc.subject.otherIn Vitro Dissolutionen_US
dc.subject.otherPHen_US
dc.titleIn silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofenen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22815122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94252/1/bdd1800.pdf
dc.identifier.doi10.1002/bdd.1800en_US
dc.identifier.sourceBiopharmaceutics & Drug Dispositionen_US
dc.identifier.citedreferenceKortejarvi H, Shawahna R, Koski A, et al. Very rapid dissolution is not needed to guarantee bioequivalence for biopharmaceutics classification system (BCS) I drugs. J Pharm Sci 2010; 99: 621 – 625.en_US
dc.identifier.citedreferenceMutalik S, Anju P, Manoj K, et al. Enhancement of dissolution rate and bioavailability of aceclofenac: a chitosan‐based solvent change approach. Int J Pharm 2008; 350: 279 – 290.en_US
dc.identifier.citedreferenceUS FDA Waiver of in vivo bioavailability and bioequivalence studies for immediate‐release solid oral dosage forms based on a Biopharmaceutics Classification System. FDA Guidance for Industry, 2002.en_US
dc.identifier.citedreferenceEMA Concept Paper on BCS‐ Based Biowaiver, 2007.en_US
dc.identifier.citedreferenceYu LX, Amidon GL, Polli JE, et al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res 2002; 19: 921 – 925.en_US
dc.identifier.citedreferenceDavies NM. Clinical pharmacokinetics of ibuprofen. The first 30 years. Clin Pharmacokinet 1998; 34: 101 – 154.en_US
dc.identifier.citedreferenceDressman JB, Hempenstall J, Reppas C. The BCS: Where do we go from here? Pharm Technol 2001; 25: 68 – 76.en_US
dc.identifier.citedreferenceAburub A, Risley DS, Mishra D. A critical evaluation of fasted state simulating gastric fluid (FaSSGF) that contains sodium lauryl sulfate and proposal of a modified recipe. Int J Pharm 2008; 347: 16 – 22.en_US
dc.identifier.citedreferenceGhosh LK, Ghosh NC, Chatterjee M, et al. Product development studies on the tablet formulation of ibuprofen to improve bioavailability. Drug Dev Ind Pharm 1998; 24: 473 – 477.en_US
dc.identifier.citedreferenceKaus LC, Fell JT. Effect of stress on the gastric emptying of capsules. J Clin Hosp Pharm 1984; 9: 249 – 251.en_US
dc.identifier.citedreferenceOberle RL, Chen TS, Lloyd C, et al. The influence of the interdigestive migrating myoelectric complex on the gastric emptying of liquids. Gastroenterology 1990; 99: 1275 – 1282.en_US
dc.identifier.citedreferenceIbekwe VC, Fadda HM, McConnell EL, et al. Interplay between intestinal pH, transit time and feed status on the in vivo performance of pH responsive ileo‐colonic release systems. Pharm Res 2008; 25: 1828 – 1835.en_US
dc.identifier.citedreferenceMadsen JL, Krogsgaard OW. Gastrointestinal scintiscanning: dosimetry. Eur J Nucl Med 1989; 15: 260 – 261.en_US
dc.identifier.citedreferenceLee KJ, Vos R, Janssens J, et al. Influence of duodenal acidification on the sensorimotor function of the proximal stomach in humans. Am J Physiol Gastrointest Liver Physiol 2004; 286: G278 – G284.en_US
dc.identifier.citedreferencePerez de la Cruz Moreno M, Oth M, Deferme S, et al. Characterization of fasted‐state human intestinal fluids collected from duodenum and jejunum. J Pharm Pharmacol 2006; 58: 1079 – 1089.en_US
dc.identifier.citedreferenceKalantzi L, Goumas K, Kalioras V, et al. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res 2006; 23: 165 – 176.en_US
dc.identifier.citedreferencePersson EM, Gustafsson AS, Carlsson AS, et al. The effects of food on the dissolution of poorly soluble drugs in human and in model small intestinal fluids. Pharm Res 2005; 22: 2141 – 2151.en_US
dc.identifier.citedreferenceCorrigan OI, Devlin Y, Butler J. Influence of dissolution medium buffer composition on ketoprofen release from ER products and in vitro‐in vivo correlation. Int J Pharm 2003; 254: 147 – 154.en_US
dc.identifier.citedreferenceLevis KA, Lane ME, Corrigan OI. Effect of buffer media composition on the solubility and effective permeability coefficient of ibuprofen. Int J Pharm 2003; 253: 49 – 59.en_US
dc.identifier.citedreferenceGalia E, Nicolaides E, Horter D, et al. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res 1998; 15: 698 – 705.en_US
dc.identifier.citedreferenceJantratid E, Janssen N, Reppas C, et al. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res 2008; 25: 1663 – 1676.en_US
dc.identifier.citedreferenceKarr WG, Abbott WO, Sample AB. Intubation studies of the human small intestine. IV. Chemical characteristics of the intestinal contents in the fasting state and as influenced by the administration of acids, of alkalies and of water. J Clin Invest 1935; 14: 893 – 900.en_US
dc.identifier.citedreferenceAnand O, Yu LX, Conner DP, et al. Dissolution testing for generic drugs: an FDA perspective. AAPS J 2011; 13: 328 – 335.en_US
dc.identifier.citedreferenceSiewert M, Dressman J, Brown CK, et al. FIP/AAPS guidelines to dissolution/ in vitro release testing of novel/special dosage forms. AAPS PharmSciTech 2003; 4: E7.en_US
dc.identifier.citedreferenceU.S. FDA Department of Health and Human Services Food and Drug Administration Center for Evaluation and Research. Guidances for Industry: Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate‐release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System, 2000.en_US
dc.identifier.citedreferenceEMA Guideline on the Investigation of Bioequivalence, 2010.en_US
dc.identifier.citedreferenceAmidon GL, Lennernas H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995; 12: 413 – 420.en_US
dc.identifier.citedreferenceYazdanian M, Briggs K, Jankovsky C, et al. The ‘high solubility’ definition of the current FDA Guidance on Biopharmaceutical Classification System may be too strict for acidic drugs. Pharm Res 2004; 21: 293 – 299.en_US
dc.identifier.citedreferenceGupta E, Barends DM, Yamashita E, et al. Review of global regulations concerning biowaivers for immediate release solid oral dosage forms. Eur J Pharm Sci 2006; 29: 315 – 324.en_US
dc.identifier.citedreferencePolli JE, Abrahamsson BS, Yu LX, et al. Summary workshop report: bioequivalence, biopharmaceutics classification system, and beyond. AAPS J 2008; 10: 373 – 379.en_US
dc.identifier.citedreferenceAgrawal S, Panchagnula R. Implication of biopharmaceutics and pharmacokinetics of rifampicin in variable bioavailability from solid oral dosage forms. Biopharm Drug Dispos 2005; 26: 321 – 334.en_US
dc.identifier.citedreferenceDavies NM. Clinical pharmacokinetics of flurbiprofen and its enantiomers. Clin Pharmacokinet 1995; 28: 100 – 114.en_US
dc.identifier.citedreferenceFaassen F, Vromans H. Biowaivers for oral immediate‐release products: implications of linear pharmacokinetics. Clin Pharmacokinet 2004; 43: 1117 – 1126.en_US
dc.identifier.citedreferenceKovacevic I, Parojcic J, Homsek I, et al. Justification of biowaiver for carbamazepine, a low soluble high permeable compound, in solid dosage forms based on IVIVC and gastrointestinal simulation. Mol Pharm 2008; 6: 40 – 47.en_US
dc.identifier.citedreferenceTubic‐Grozdanis M, Bolger MB, Langguth P. Application of gastrointestinal simulation for extensions for biowaivers of highly permeable compounds. AAPS J 2008; 10: 213 – 226.en_US
dc.identifier.citedreferencePotthast H, Dressman JB, Junginger HE, et al. Biowaiver monographs for immediate release solid oral dosage forms: ibuprofen. J Pharm Sci 2005; 94: 2121 – 2131.en_US
dc.identifier.citedreferenceAlvarez C, Nunez I, Torrado JJ, et al. Investigation on the possibility of biowaivers for ibuprofen. J Pharm Sci 2011; 100: 2343 – 2349.en_US
dc.identifier.citedreferenceMooney KG, Mintun MA, Himmelstein KJ, et al. Dissolution kinetics of carboxylic acids II: effect of buffers. J Pharm Sci 1981; 70: 22 – 32.en_US
dc.identifier.citedreferenceFallingborg J. Intraluminal pH of the human gastrointestinal tract. Dan Med Bull 1999; 46: 183 – 196.en_US
dc.identifier.citedreferenceVertzoni M, Fotaki N, Kostewicz E, et al. Dissolution media simulating the intralumenal composition of the small intestine: physiological issues and practical aspects. J Pharm Pharmacol 2004; 56: 453 – 462.en_US
dc.identifier.citedreferenceThe United States Pharmacopeia. USP 24 The National Formulary NF19, 2000.en_US
dc.identifier.citedreferenceSheng JJ, McNamara DP, Amidon GL. Toward an in vivo dissolution methodology: a comparison of phosphate and bicarbonate buffers. Mol Pharm 2009; 6: 29 – 39.en_US
dc.identifier.citedreferenceAbernethy DR, Greenblatt DJ. Ibuprofen disposition in obese individuals. Arthritis Rheum 1985; 28: 1117 – 1121.en_US
dc.identifier.citedreferenceAvdeef A, Box KJ, Comer JE, et al. pH‐metric log P 11. pKa determination of water‐insoluble drugs in organic solvent‐water mixtures. J Pharm Biomed Anal 1999; 20: 631 – 641.en_US
dc.identifier.citedreferenceAvdeef A, Box KJ, Comer JE, et al. pH‐metric logP 10. Determination of liposomal membrane‐water partition coefficients of ionizable drugs. Pharm Res 1998; 15: 209 – 215.en_US
dc.identifier.citedreferenceGeisslinger G, Menzel S, Wissel K, et al. Pharmacokinetics of ketoprofen enantiomers after different doses of the racemate. Br J Clin Pharmacol 1995; 40: 73 – 75.en_US
dc.identifier.citedreferenceHerzfeldt CD, Kummel R. Dissociation constants, solubilities and dissolution rates of some selected nonsteroidal antiinflammatories. Drug Dev Ind Pharm 1983; 9: 767 – 793.en_US
dc.identifier.citedreferenceKasim NA, Whitehouse M, Ramachandran C, et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm 2004; 1: 85 – 96.en_US
dc.identifier.citedreferenceSangster J. Octanol‐water partition coefficients, 1993.en_US
dc.identifier.citedreferenceLu AT, Frisella ME, Johnson KC. Dissolution modeling: factors affecting the dissolution rates of polydisperse powders. Pharm Res 1993; 10: 1308 – 1314.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.