Show simple item record

Rotator cuff tear reduces muscle fiber specific force production and induces macrophage accumulation and autophagy

dc.contributor.authorGumucio, Jonathan P.en_US
dc.contributor.authorDavis, Max E.en_US
dc.contributor.authorBradley, Joshua R.en_US
dc.contributor.authorStafford, Patrick L.en_US
dc.contributor.authorSchiffman, Corey J.en_US
dc.contributor.authorLynch, Evan B.en_US
dc.contributor.authorClaflin, Dennis R.en_US
dc.contributor.authorBedi, Asheeshen_US
dc.contributor.authorMendias, Christopher L.en_US
dc.date.accessioned2012-11-07T17:04:34Z
dc.date.available2014-02-03T16:21:43Zen_US
dc.date.issued2012-12en_US
dc.identifier.citationGumucio, Jonathan P.; Davis, Max E.; Bradley, Joshua R.; Stafford, Patrick L.; Schiffman, Corey J.; Lynch, Evan B.; Claflin, Dennis R.; Bedi, Asheesh; Mendias, Christopher L. (2012). "Rotator cuff tear reduces muscle fiber specific force production and induces macrophage accumulation and autophagy." Journal of Orthopaedic Research 30(12): 1963-1970. <http://hdl.handle.net/2027.42/94259>en_US
dc.identifier.issn0736-0266en_US
dc.identifier.issn1554-527Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94259
dc.description.abstractFull‐thickness tears to the rotator cuff can cause severe pain and disability. Untreated tears progress in size and are associated with muscle atrophy and an infiltration of fat to the area, a condition known as “fatty degeneration.” To improve the treatment of rotator cuff tears, a greater understanding of the changes in the contractile properties of muscle fibers and the molecular regulation of fatty degeneration is essential. Using a rat model of rotator cuff injury, we measured the force generating capacity of individual muscle fibers and determined changes in muscle fiber type distribution that develop after a full thickness rotator cuff tear. We also measured the expression of mRNA and miRNA transcripts involved in muscle atrophy, lipid accumulation, and matrix synthesis. We hypothesized that a decrease in specific force of rotator cuff muscle fibers, an accumulation of type IIb fibers, and an upregulation in fibrogenic, adipogenic, and inflammatory gene expression occur in torn rotator cuff muscles. Thirty days following rotator cuff tear, we observed a reduction in muscle fiber force production, an induction of fibrogenic, adipogenic, and autophagocytic mRNA and miRNA molecules, and a dramatic accumulation of macrophages in areas of fat accumulation. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1963–1970, 2012en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherRotator Cuffen_US
dc.subject.otherAutophagyen_US
dc.subject.otherFatty Degenerationen_US
dc.subject.otherMuscle Fiber Contractilityen_US
dc.titleRotator cuff tear reduces muscle fiber specific force production and induces macrophage accumulation and autophagyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, Michigan 48109‐2200en_US
dc.contributor.affiliationumDepartment of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, Michigan 48109‐2200. T: 734‐764‐3250; F: 734‐647‐0003en_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michiganen_US
dc.identifier.pmid22696414en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94259/1/22168_ftp.pdf
dc.identifier.doi10.1002/jor.22168en_US
dc.identifier.sourceJournal of Orthopaedic Researchen_US
dc.identifier.citedreferencevan Rooij E, Sutherland LB, Thatcher JE, et al. 2008. Dysregulation of microRNAs after myocardial infarction reveals a role of miR‐29 in cardiac fibrosis. Proc Natl Acad Sci USA 105: 13027 – 13032.en_US
dc.identifier.citedreferenceDocheva D, Hunziker EB, Fässler R, et al. 2005. Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol Cell Biol 25: 699 – 705.en_US
dc.identifier.citedreferenceMaeda T, Sakabe T, Sunaga A, et al. 2011. Conversion of mechanical force into TGF‐β‐mediated biochemical signals. Curr Biol 21: 933 – 941.en_US
dc.identifier.citedreferenceMendias CL, Bakhurin KI, Faulkner JA. 2008. Tendons of myostatin‐deficient mice are small, brittle, and hypocellular. Proc Natl Acad Sci USA 105: 388 – 393.en_US
dc.identifier.citedreferenceMurchison ND, Price BA, Conner DA, et al. 2007. Regulation of tendon differentiation by scleraxis distinguishes force‐transmitting tendons from muscle‐anchoring tendons. Development 134: 2697 – 2708.en_US
dc.identifier.citedreferenceGulotta LV, Kovacevic D, Packer JD, et al. 2011. Bone marrow‐derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med 39: 1282 – 1289.en_US
dc.identifier.citedreferenceJoe AWB, Yi L, Natarajan A, et al. 2010. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12: 153 – 163.en_US
dc.identifier.citedreferenceKwiecinski M, Noetel A, Elfimova N, et al. 2011. Hepatocyte growth factor (HGF) inhibits collagen I and IV synthesis in hepatic stellate cells by miRNA‐29 induction. PLoS ONE 6: e24568.en_US
dc.identifier.citedreferenceThum T, Catalucci D, Bauersachs J. 2008. MicroRNAs: novel regulators in cardiac development and disease. Cardiovasc Res 79: 562 – 570.en_US
dc.identifier.citedreferenceItoigawa Y, Kishimoto KN, Sano H, et al. 2011. Molecular mechanism of fatty degeneration in rotator cuff muscle with tendon rupture. J Orthop Res 29: 861 – 866.en_US
dc.identifier.citedreferenceWang Y‐X. 2010. PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res 20: 124 – 137.en_US
dc.identifier.citedreferenceBuers I, Hofnagel O, Ruebel A, et al. 2011. Lipid droplet associated proteins: an emerging role in atherogenesis. Histol Histopathol 26: 631 – 642.en_US
dc.identifier.citedreferenceFriedman AD, Keefer JR, Kummalue T, et al. 2003. Regulation of granulocyte and monocyte differentiation by CCAAT/enhancer binding protein alpha. Blood Cells Mol Dis 31: 338 – 341.en_US
dc.identifier.citedreferenceOlefsky JM, Glass CK. 2010. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72: 219 – 246.en_US
dc.identifier.citedreferencePhillips SA, Choe CC, Ciaraldi TP, et al. 2005. Adipocyte differentiation‐related protein in human skeletal muscle: relationship to insulin sensitivity. Obes Res 13: 1321 – 1329.en_US
dc.identifier.citedreferenceTrajkovski M, Hausser J, Soutschek J, et al. 2011. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474: 649 – 653.en_US
dc.identifier.citedreferenceLee EK, Lee MJ, Abdelmohsen K, et al. 2011. miR‐130 suppresses adipogenesis by inhibiting peroxisome proliferator‐activated receptor gamma expression. Mol Cell Biol 31: 626 – 638.en_US
dc.identifier.citedreferenceYang Z, Bian C, Zhou H, et al. 2011. MicroRNA hsa‐miR‐138 inhibits adipogenic differentiation of human adipose tissue‐derived mesenchymal stem cells through adenovirus EID‐1. Stem cell Dev 20: 259 – 267.en_US
dc.identifier.citedreferenceXie H, Lim B, Lodish HF. 2009. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58: 1050 – 1057.en_US
dc.identifier.citedreferenceLi H, Zhang Z, Zhou X, et al. 2010. Effects of MicroRNA‐143 in the differentiation and proliferation of bovine intramuscular preadipocytes. Mol Biol Rep 38: 4273 – 4280.en_US
dc.identifier.citedreferenceKim SY, Kim AY, Lee HW, et al. 2010. miR‐27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun 392: 323 – 328.en_US
dc.identifier.citedreferenceInoue T, Plieth D, Venkov CD, et al. 2005. Antibodies against macrophages that overlap in specificity with fibroblasts. Kidney Int 67: 2488 – 2493.en_US
dc.identifier.citedreferenceLi H, Song Y, Li F, et al. 2010. Identification of lipid droplet‐associated proteins in the formation of macrophage‐derived foam cells using microarrays. Int J Mol Med 26: 231 – 239.en_US
dc.identifier.citedreferenceYonezawa T, Kurata R, Kimura M, et al. 2011. Which CIDE are you on? Apoptosis and energy metabolism. Mol Biosyst 7: 91 – 100.en_US
dc.identifier.citedreferenceTontonoz P, Nagy L, Alvarez JG, et al. 1998. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93: 241 – 252.en_US
dc.identifier.citedreferenceFunderburk SF, Wang QJ, Yue Z. 2010. The Beclin 1–VPS34 complex – at the crossroads of autophagy and beyond. Trends Cell Biol 20: 355 – 362.en_US
dc.identifier.citedreferenceMartinet W, De Meyer GRY. 2009. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res 104: 304 – 317.en_US
dc.identifier.citedreferenceBottinelli R, Canepari M, Pellegrino MA, et al. 1996. Force‐velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. J Physiol 495: 573 – 586.en_US
dc.identifier.citedreferenceGerber C, Fuchs B, Hodler J. 2000. The results of repair of massive tears of the rotator cuff. J Bone Joint Surg Am 82: 505 – 515.en_US
dc.identifier.citedreferenceNishimura T. 2010. The role of intramuscular connective tissue in meat texture. Anim Sci J 81: 21 – 27.en_US
dc.identifier.citedreferenceBedi A, Dines J, Warren RF, et al. 2010. Massive tears of the rotator cuff. J Bone Joint Surg Am 92: 1894 – 1908.en_US
dc.identifier.citedreferenceWalsworth MK, Doukas WC, Murphy KP, et al. 2009. Descriptive analysis of patients undergoing shoulder surgery at a tertiary care military medical center. Mil Med 174: 642 – 644.en_US
dc.identifier.citedreferenceGoutallier D, Postel JM, Bernageau J, et al. 1994. Fatty muscle degeneration in cuff ruptures. Pre‐ and postoperative evaluation by CT scan. Clin Orthop Relat Res 304: 78 – 83.en_US
dc.identifier.citedreferenceGladstone JN, Bishop JY, Lo IKY, et al. 2007. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am J Sports Med 35: 719 – 728.en_US
dc.identifier.citedreferenceRokito AS, Zuckerman JD, Gallagher MA, et al. 1996. Strength after surgical repair of the rotator cuff. J Shoulder Elbow Surg 5: 12 – 17.en_US
dc.identifier.citedreferenceHawke TJ, Garry DJ. 2001. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91: 534 – 551.en_US
dc.identifier.citedreferenceDas R, Rich J, Kim HM, et al. 2010. Effects of botulinum toxin‐induced paralysis on postnatal development of the supraspinatus muscle. J Orthop Res 29: 281 – 288.en_US
dc.identifier.citedreferenceFrey E, Regenfelder F, Sussmann P, et al. 2009. Adipogenic and myogenic gene expression in rotator cuff muscle of the sheep after tendon tear. J Orthop Res 27: 504 – 509.en_US
dc.identifier.citedreferenceKim HM, Galatz LM, Lim C, et al. 2011. The effect of tear size and nerve injury on rotator cuff muscle fatty degeneration in a rodent animal model. J Shoulder Elbow Surg (in press).en_US
dc.identifier.citedreferenceMeyer DC, Hoppeler H, von Rechenberg B, et al. 2004. A pathomechanical concept explains muscle loss and fatty muscular changes following surgical tendon release. J Orthop Res 22: 1004 – 1007.en_US
dc.identifier.citedreferenceSmith C, Kruger MJ, Smith RM, et al. 2008. The inflammatory response to skeletal muscle injury: illuminating complexities. Sports Med 38: 947 – 969.en_US
dc.identifier.citedreferenceTerman A, Gustafsson B, Brunk UT. 2007. Autophagy, organelles and ageing. J Pathol 211: 134 – 143.en_US
dc.identifier.citedreferenceSandri M. 2011. New findings of lysosomal proteolysis in skeletal muscle. Curr Opin Clin Nutr Metab Care 14: 223 – 229.en_US
dc.identifier.citedreferenceBrennecke J, Stark A, Russell RB, et al. 2005. Principles of microRNA‐target recognition. PLoS Biol 3: e85.en_US
dc.identifier.citedreferenceMcCarthy JJ. 2011. The MyomiR network in skeletal muscle plasticity. Exerc Sport Sci Rev 39: 150 – 154.en_US
dc.identifier.citedreferenceMcGregor RA, Choi MS. 2011. MicroRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 11: 304 – 316.en_US
dc.identifier.citedreferenceBauersachs J. 2010. Regulation of myocardial fibrosis by MicroRNAs. J Cardiovasc Pharmacol 56: 454 – 459.en_US
dc.identifier.citedreferenceSoslowsky LJ, Carpenter JE, DeBano CM, et al. 1996. Development and use of an animal model for investigations on rotator cuff disease. J Shoulder Elbow Surg 5: 383 – 392.en_US
dc.identifier.citedreferenceLiu X, Manzano G, Kim HT, et al. 2011. A rat model of massive rotator cuff tears. J Orthop Res 29: 588 – 595.en_US
dc.identifier.citedreferenceBedi A, Fox AJS, Harris PE, et al. 2010. Diabetes mellitus impairs tendon‐bone healing after rotator cuff repair. J Shoulder Elbow Surg 19: 978 – 988.en_US
dc.identifier.citedreferenceMendias CL, Kayupov E, Bradley JR, et al. 2011. Decreased specific force and power production of muscle fibers from myostatin‐deficient mice are associated with a suppression of protein degradation. J Appl Physiol 111: 185 – 191.en_US
dc.identifier.citedreferencePanchangam A, Claflin DR, Palmer ML, et al. 2008. Magnitude of sarcomere extension correlates with initial sarcomere length during lengthening of activated single fibers from soleus muscle of rats. Biophys J 95: 1890 – 1901.en_US
dc.identifier.citedreferenceClaflin DR, Larkin LM, Cederna PS, et al. 2011. Effects of high‐ and low‐velocity resistance training on the contractile properties of skeletal muscle fibers from young and older humans. J Appl Physiol 111: 1021 – 1030.en_US
dc.identifier.citedreferenceSchmittgen TD, Livak KJ. 2008. Analyzing real‐time PCR data by the comparative C(T) method. Nat Protoc 3: 1101 – 1108.en_US
dc.identifier.citedreferenceMannava S, Plate JF, Whitlock PW, et al. 2011. Evaluation of in vivo rotator cuff muscle function after acute and chronic detachment of the supraspinatus tendon: an experimental study in an animal model. J Bone Joint Surg Am 93: 1702 – 1711.en_US
dc.identifier.citedreferenceMeyer DC, Gerber C, von Rechenberg B, et al. 2011. Amplitude and strength of muscle contraction are reduced in experimental tears of the rotator cuff. Am J Sports Med 39: 1456 – 1461.en_US
dc.identifier.citedreferenceWard SR, Sarver JJ, Eng CM, et al. 2010. Plasticity of muscle architecture after supraspinatus tears. J Orthop Sports Phys Ther 40: 729 – 735.en_US
dc.identifier.citedreferenceSchiaffino S, Reggiani C. 1996. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76: 371 – 423.en_US
dc.identifier.citedreferenceEisenberg I, Alexander MS, Kunkel LM. 2009. miRNAS in normal and diseased skeletal muscle. J Cell Mol Med 13: 2 – 11.en_US
dc.identifier.citedreferenceSandri M. 2008. Signaling in muscle atrophy and hypertrophy. Physiology 23: 160 – 170.en_US
dc.identifier.citedreferenceLang CH, Huber D, Frost RA. 2007. Burn‐induced increase in atrogin‐1 and MuRF‐1 in skeletal muscle is glucocorticoid independent but downregulated by IGF‐I. Am J Physiol Regul Integr Comp Physiol 292: R328 – R336.en_US
dc.identifier.citedreferenceSchmutz S, Fuchs T, Regenfelder F, et al. 2009. Expression of atrophy mRNA relates to tendon tear size in supraspinatus muscle. Clin Orthop Relat Res 467: 457 – 464.en_US
dc.identifier.citedreferenceWada S, Kato Y, Okutsu M, et al. 2011. Translational suppression of atrophic regulators by miR‐23a integrates resistance to skeletal muscle atrophy. J Biol Chem 44: 38456 – 38465.en_US
dc.identifier.citedreferenceVillalta SA, Rinaldi C, Deng B, et al. 2011. Interleukin‐10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Hum Mol Genet 20: 790 – 805.en_US
dc.identifier.citedreferenceBarton ER, Gimbel JA, Williams GR, et al. 2005. Rat supraspinatus muscle atrophy after tendon detachment. J Orthop Res 23: 259 – 265.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.