Show simple item record

The use of Neurotrophin Therapy in the Inner Ear to Augment Cochlear Implantation Outcomes

dc.contributor.authorVan De Water, Thomasen_US
dc.contributor.authorLaitman, Jeffrey T.en_US
dc.date.accessioned2012-11-07T17:04:35Z
dc.date.available2014-01-07T14:51:07Zen_US
dc.date.issued2012-11en_US
dc.identifier.citationVan De Water, Thomas; Laitman, Jeffrey T. (2012). "The use of Neurotrophin Therapy in the Inner Ear to Augment Cochlear Implantation Outcomes." The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 295(11): 1896-1908. <http://hdl.handle.net/2027.42/94260>en_US
dc.identifier.issn1932-8486en_US
dc.identifier.issn1932-8494en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94260
dc.description.abstractSevere to profound deafness is most often secondary to a loss of or injury to cochlear mechanosensory cells, and there is often an associated loss of the peripheral auditory neural structures, specifically the spiral ganglion neurons and peripheral auditory fibers. Cochlear implantation is currently our best hearing rehabilitation strategy for severe to profound deafness. These implants work by directly electrically stimulating the remnant auditory neural structures within the deafened cochlea. When administered to the deafened cochlea in animal models, neurotrophins, specifically brain derived neurotrophic factor and neurotrophin‐3, have been shown to dramatically improve spiral ganglion neuron survival and stimulate peripheral auditory fiber regrowth. In animal models, neurotrophins administered in combination with cochlear implantation has resulted in significant improvements in the electrophysiological and psychophysical measures of outcome. While further research must be done before these therapies can be applied clinically, neurotrophin therapies for the inner ear show great promise in enhancing CI outcomes and the treatment of hearing loss. Anat Rec, 2012. © 2012 Wiley Periodiclas, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherNeurotrophinen_US
dc.subject.otherBDNFen_US
dc.subject.otherNT3en_US
dc.subject.otherCochlear Implanten_US
dc.titleThe use of Neurotrophin Therapy in the Inner Ear to Augment Cochlear Implantation Outcomesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumKresge Hearing Research Institute, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumKresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, MSRB III, Room 9301, Ann Arbor, MI 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94260/1/22586_ftp.pdf
dc.identifier.doi10.1002/ar.22586en_US
dc.identifier.sourceThe Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biologyen_US
dc.identifier.citedreferenceSanti PA, Ruggero MA, Nelson DA, Turner CW. 1982. Kanamycin and bumetanide ototoxicity: anatomical, physiological and behavioral correlates. Hear Res 7: 261 – 279.en_US
dc.identifier.citedreferenceSpoendlin H. 1971a. Degeneration behaviour of the cochlear nerve. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 200: 275 – 291.en_US
dc.identifier.citedreferenceSpoendlin H. 1971b. Primary structural changes in the organ of Corti after acoustic overstimulation. Acta Otolaryngol 71: 166 – 176.en_US
dc.identifier.citedreferenceSpoendlin H, Suter R. 1976. Regeneration in the VIII nerve. Acta Otolaryngol 81: 228 – 236.en_US
dc.identifier.citedreferenceSprinzl GM, Riechelmann H. 2010. Current trends in treating hearing loss in elderly people: a review of the technology and treatment options ‐ a mini‐review. Gerontology 56: 351 – 358.en_US
dc.identifier.citedreferenceStaecker H, Gabaizadeh R, Federoff H, Van de Water TR. 1998. Brain‐derived neurotrophic factor gene therapy prevents spiral ganglion degeneration after hair cell loss. Otolaryngol Head Neck Surg 119: 7 – 13.en_US
dc.identifier.citedreferenceStaecker H, Galinovic‐Schwartz V, Liu W, Lefebvre P, Kopke R, Malgrange B, Moonen G, Van de Water TR. 1996a. The role of the neurotrophins in maturation and maintenance of postnatal auditory innervation. Am J Otol 17: 486 – 492.en_US
dc.identifier.citedreferenceStaecker H, Kopke R, Malgrange B, Lefebvre P, Van de Water TR. 1996b. NT‐3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells. Neuroreport 7: 889 – 894.en_US
dc.identifier.citedreferenceStrominger RN, Bohne BA, Harding GW. 1995. Regenerated nerve fibers in the noise‐damaged chinchilla cochlea are not efferent. Hear Res 92: 52 – 62.en_US
dc.identifier.citedreferenceSugawara M, Murtie JC, Stankovic KM, Liberman MC, Corfas G. 2007. Dynamic patterns of neurotrophin 3 expression in the postnatal mouse inner ear. J Comp Neurol 501: 30 – 37.en_US
dc.identifier.citedreferenceTerayama Y, Kaneko K, Tanaka K, Kawamoto K. 1979. Ultrastructural changes of the nerve elements following disruption of the organ of Corti. II. Nerve elements outside the organ of Corti. Acta Otolaryngol 88: 27 – 36.en_US
dc.identifier.citedreferenceTerayama Y, Kaneko Y, Kawamoto K, Sakai N. 1977. Ultrastructural changes of the nerve elements following disruption of the organ of Corti. I. Nerve elements in the organ of Corti. Acta Otolaryngol 83: 291 – 302.en_US
dc.identifier.citedreferenceTeufert KB, Linthicum FH, Connell SS. 2006. The effect of organ of corti loss on ganglion cell survival in humans. Otol Neurotol 27: 1146 – 1151.en_US
dc.identifier.citedreferenceWeiss MA, Frisancho JC, Roessler BJ, Raphael Y. 1997. Viral‐mediated gene transfer in the cochlea. Int J Dev Neurosci 15: 577 – 583.en_US
dc.identifier.citedreferenceWise AK, Hume CR, Flynn BO, Jeelall YS, Suhr CL, Sgro BE, O'Leary SJ, Shepherd RK, Richardson RT. 2010. Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea. Mol Ther 18: 1111 – 1122.en_US
dc.identifier.citedreferenceWise AK, Richardson R, Hardman J, Clark G, O'leary S. 2005. Resprouting and survival of guinea pig cochlear neurons in response to the administration of the neurotrophins brain‐derived neurotrophic factor and neurotrophin‐3. J Comp Neurol 487: 147 – 165.en_US
dc.identifier.citedreferenceWright CG. 1976. Neural damage in the guinea pig cochlea after noise exposure. A light microscopic study. Acta Otolaryngol 82: 82 – 94.en_US
dc.identifier.citedreferenceXu L, Tsai Y, Pfingst BE. 2002. Features of stimulation affecting tonal‐speech perception: implications for cochlear prostheses. J Acoust Soc Am 112: 247 – 258.en_US
dc.identifier.citedreferenceYamagata T, Miller JM, Ulfendahl M, Olivius NP, Altschuler RA, Pyykkö I, Bredberg G. 2004. Delayed neurotrophic treatment preserves nerve survival and electrophysiological responsiveness in neomycin‐deafened guinea pigs. J Neurosci Res 78: 75 – 86.en_US
dc.identifier.citedreferenceYlikoski J, Pirvola U, Moshnyakov M, Palgi J, Arumäe U, Saarma M. 1993. Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hear Res 65: 69 – 78.en_US
dc.identifier.citedreferenceZappia JJ, Altschuler RA. 1989. Evaluation of the effect of ototopical neomycin on spiral ganglion cell density in the guinea pig. Hear Res 40: 29 – 37.en_US
dc.identifier.citedreferenceZhou Z, Liu Q, Davis RL. 2005. Complex regulation of spiral ganglion neuron firing patterns by neurotrophin‐3. J Neurosci 25: 7558 – 7566.en_US
dc.identifier.citedreferenceAbrashkin KA, Izumikawa M, Miyazawa T, Wang C‐H, Crumling MA, Swiderski DL, Beyer LA, Gong T‐WL, Raphael Y. 2006. The fate of outer hair cells after acoustic or ototoxic insults. Hear Res 218: 20 – 29.en_US
dc.identifier.citedreferenceAdamson CL, Reid MA, Davis RL. 2002. Opposite actions of brain‐derived neurotrophic factor and neurotrophin‐3 on firing features and ion channel composition of murine spiral ganglion neurons. J Neurosci 22: 1385 – 1396.en_US
dc.identifier.citedreferenceAgterberg MJH, Versnel H, de Groot JCMJ, Smoorenburg GF, Albers FWJ, Klis SFL. 2008. Morphological changes in spiral ganglion cells after intracochlear application of brain‐derived neurotrophic factor in deafened guinea pigs. Hear Res 244: 25 – 34.en_US
dc.identifier.citedreferenceAgterberg MJH, Versnel H, van Dijk LM, de Groot JCMJ, Klis SFL. 2009. Enhanced survival of spiral ganglion cells after cessation of treatment with brain‐derived neurotrophic factor in deafened guinea pigs. J Assoc Res Otolaryngol 10: 355 – 367.en_US
dc.identifier.citedreferenceAltschuler RA, Cho Y, Ylikoski J, Pirvola U, Magal E, Miller JM. 1999. Rescue and regrowth of sensory nerves following deafferentation by neurotrophic factors. Ann N Y Acad Sci 884: 305 – 311.en_US
dc.identifier.citedreferenceBankiewicz KS, Forsayeth J, Eberling JL, Sanchez‐Pernaute R, Pivirotto P, Bringas J, Herscovitch P, Carson RE, Eckelman W, Reutter B, Cunningham J. 2006. Long‐term clinical improvement in MPTP‐lesioned primates after gene therapy with AAV‐hAADC. Mol Ther 14: 564 – 570.en_US
dc.identifier.citedreferenceBermingham NA, Hassan BA, Price SD, Vollrath MA, Ben‐Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY. 1999. Math1: an essential gene for the generation of inner ear hair cells. Science 284: 1837 – 1841.en_US
dc.identifier.citedreferenceBichler E, Spoendlin H, Rauchegger H. 1983. Degeneration of cochlear neurons after amikacin intoxication in the rat. Arch Otorhinolaryngol 237: 201 – 208.en_US
dc.identifier.citedreferenceBohne BA, Harding GW. 1992. Neural regeneration in the noise‐damaged chinchilla cochlea. The Laryngoscope 102: 693 – 703.en_US
dc.identifier.citedreferenceBrown JN, Miller JM, Altschuler RA, Nuttall AL. 1993. Osmotic pump implant for chronic infusion of drugs into the inner ear. Hear Res 70: 167 – 172.en_US
dc.identifier.citedreferenceCampbell VA, Crews JE, Moriarty DG, Zack MM, Blackman DK. 1999. Surveillance for sensory impairment, activity limitation, and health‐related quality of life among older adults‐‐United States, 1993‐1997. MMWR CDC Surveill Summ 48: 131 – 156.en_US
dc.identifier.citedreferenceChikar JA, Colesa DJ, Swiderski DL, Di Polo A, Raphael Y, Pfingst BE. 2008. Over‐expression of BDNF by adenovirus with concurrent electrical stimulation improves cochlear implant thresholds and survival of auditory neurons. Hear Res 245: 24 – 34.en_US
dc.identifier.citedreferenceChikar JA, Hendricks JL, Richardson‐Burns SM, Raphael Y, Pfingst BE, Martin DC. 2012. The use of a dual PEDOT and RGD‐functionalized alginate hydrogel coating to provide sustained drug delivery and improved cochlear implant function. Biomaterials 33: 1982 – 1990.en_US
dc.identifier.citedreferenceCohen LT, Lenarz T, Battmer R‐D, Bender von Saebelkampf C, Busby PA, Cowan RSC. 2005. A psychophysical forward masking comparison of longitudinal spread of neural excitation in the Contour and straight Nucleus electrode arrays. Int J Audiol 44: 559 – 566.en_US
dc.identifier.citedreferenceCohen LT, Saunders E, Knight MR, Cowan RSC. 2006. Psychophysical measures in patients fitted with Contour and straight Nucleus electrode arrays. Hear Res 212: 160 – 175.en_US
dc.identifier.citedreferenceDavis RL, Liu Q. 2011. Complex primary afferents: What the distribution of electrophysiologically‐relevant phenotypes within the spiral ganglion tells us about peripheral neural coding. Hear Res 276: 34 – 43.en_US
dc.identifier.citedreferenceDorman MF, Loizou PC, Fitzke J, Tu Z. 1998. The recognition of sentences in noise by normal‐hearing listeners using simulations of cochlear‐implant signal processors with 6‐20 channels. J Acoust Soc Am 104: 3583 – 3585.en_US
dc.identifier.citedreferenceErnfors P, Duan ML, ElShamy WM, Canlon B. 1996. Protection of auditory neurons from aminoglycoside toxicity by neurotrophin‐3. Nat Med 2: 463 – 467.en_US
dc.identifier.citedreferenceErnfors P, Van De Water T, Loring J, Jaenisch R. 1995. Complementary roles of BDNF and NT‐3 in vestibular and auditory development. Neuron 14: 1153 – 1164.en_US
dc.identifier.citedreferenceFariñas I, Jones KR, Backus C, Wang XY, Reichardt LF. 1994. Severe sensory and sympathetic deficits in mice lacking neurotrophin‐3. Nature 369: 658 – 661.en_US
dc.identifier.citedreferenceFariñas I, Jones KR, Tessarollo L, Vigers AJ, Huang E, Kirstein M, de Caprona DC, Coppola V, Backus C, Reichardt LF, Fritzsch B. 2001. Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci 21: 6170 – 6180.en_US
dc.identifier.citedreferenceFayad JN, Linthicum FH. 2006. Multichannel cochlear implants: relation of histopathology to performance. The Laryngoscope 116: 1310 – 1320.en_US
dc.identifier.citedreferenceFitzgerald MB, Shapiro WH, McDonald PD, Neuburger HS, Ashburn‐Reed S, Immerman S, Jethanamest D, Roland JT, Svirsky MA. 2007. The effect of perimodiolar placement on speech perception and frequency discrimination by cochlear implant users. Acta Otolaryngol 127: 378 – 383.en_US
dc.identifier.citedreferenceFriesen LM, Shannon RV, Baskent D, Wang X. 2001. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J Acoust Soc Am 110: 1150 – 1163.en_US
dc.identifier.citedreferenceFrijns JH, Briaire JJ, Grote JJ. 2001. The importance of human cochlear anatomy for the results of modiolus‐hugging multichannel cochlear implants. Otol Neurotol 22: 340 – 349.en_US
dc.identifier.citedreferenceFritzsch B, Fariñas I, Reichardt LF. 1997. Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region‐specific fashion. J Neurosci 17: 6213 – 6225.en_US
dc.identifier.citedreferenceFritzsch B, Jahan I, Pan N, Kersigo J, Duncan J, Kopecky B. 2011. Dissecting the molecular basis of organ of Corti development: Where are we now? Hear Res 276: 16 – 26.en_US
dc.identifier.citedreferenceGillespie LN, Clark GM, Bartlett PF, Marzella PL. 2003. BDNF‐induced survival of auditory neurons in vivo: Cessation of treatment leads to accelerated loss of survival effects. J Neurosci Res 71: 785 – 790.en_US
dc.identifier.citedreferenceGlueckert R, Bitsche M, Miller JM, Zhu Y, Prieskorn DM, Altschuler RA, Schrott‐Fischer A. 2008. Deafferentation‐associated changes in afferent and efferent processes in the guinea pig cochlea and afferent regeneration with chronic intrascalar brain‐derived neurotrophic factor and acidic fibroblast growth factor. J Comp Neurol 507: 1602 – 1621.en_US
dc.identifier.citedreferenceHavenith S, Versnel H, Agterberg MJH, de Groot JCMJ, Sedee R‐J, Grolman W, Klis SFL. 2011. Spiral ganglion cell survival after round window membrane application of brain‐derived neurotrophic factor using gelfoam as carrier. Hear Res 272: 168 – 177.en_US
dc.identifier.citedreferenceHawkins JE. 1973. Comparative otopathology: aging, noise, and ototoxic drugs. Adv Otorhinolaryngol 20: 125 – 141.en_US
dc.identifier.citedreferenceHinojosa R, Lindsay JR. 1980. Profound deafness. Associated sensory and neural degeneration. Arch Otolaryngol 106: 193 – 209.en_US
dc.identifier.citedreferenceHuang EJ, Reichardt LF. 2001. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24: 677 – 736.en_US
dc.identifier.citedreferenceIzumikawa M, Batts SA, Miyazawa T, Swiderski DL, Raphael Y. 2008. Response of the flat cochlear epithelium to forced expression of Atoh1. Hear Res 240: 52 – 56.en_US
dc.identifier.citedreferenceIzumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF, Brough DE, Raphael Y. 2005. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 11: 271 – 276.en_US
dc.identifier.citedreferenceJohnsson LG, Hawkins JE. 1972. Strial atrophy in clinical and experimental deafness. The Laryngoscope 82: 1105 – 1125.en_US
dc.identifier.citedreferenceJohnsson LG, Hawkins JE. 1976. Degeneration patterns in human ears exposed to noise. Ann Otol Rhinol Laryngol 85: 725 – 739.en_US
dc.identifier.citedreferenceKang SY, Colesa DJ, Swiderski DL, Su GL, Raphael Y, Pfingst BE. 2010. Effects of hearing preservation on psychophysical responses to cochlear implant stimulation. J Assoc Res Otolaryngol 11: 245 – 265.en_US
dc.identifier.citedreferenceKanzaki S, Stöver T, Kawamoto K, Prieskorn DM, Altschuler RA, Miller JM, Raphael Y. 2002. Glial cell line‐derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation. J Comp Neurol 454: 350 – 360.en_US
dc.identifier.citedreferenceKawamoto K, Ishimoto S‐I, Minoda R, Brough DE, Raphael Y. 2003. Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 23: 4395 – 4400.en_US
dc.identifier.citedreferenceKawano A, Seldon HL, Clark GM, Ramsden RT, Raine CH. 1998. Intracochlear factors contributing to psychophysical percepts following cochlear implantation. Acta Otolaryngol 118: 313 – 326.en_US
dc.identifier.citedreferenceKerr A, Schuknecht HF. 1968. The spiral ganglion in profound deafness. Acta Otolaryngol 65: 586 – 598.en_US
dc.identifier.citedreferenceKhan AM, Handzel O, Burgess BJ, Damian D, Eddington DK, Nadol JB. 2005. Is word recognition correlated with the number of surviving spiral ganglion cells and electrode insertion depth in human subjects with cochlear implants? The Laryngoscope 115: 672 – 677.en_US
dc.identifier.citedreferenceKim YH, Raphael Y. 2007. Cell division and maintenance of epithelial integrity in the deafened auditory epithelium. Cell Cycle 6: 612 – 619.en_US
dc.identifier.citedreferenceKong Y‐Y, Cruz R, Jones JA, Zeng F‐G. 2004. Music Perception with Temporal Cues in Acoustic and Electric Hearing. Ear Hear 25: 173 – 185.en_US
dc.identifier.citedreferenceLalwani A, Walsh B, Reilly P, Carvalho G, Zolotukhin S, Muzyczka N, Mhatre A. 1998. Long‐term in vivo cochlear transgene expression mediated by recombinant adeno‐associated virus. Gene Ther 5: 277 – 281.en_US
dc.identifier.citedreferenceLalwani AK, Mhatre AN. 2003. Cochlear gene therapy. Ear Hear 24: 342 – 348.en_US
dc.identifier.citedreferenceLawner BE, Harding GW, Bohne BA. 1997. Time course of nerve‐fiber regeneration in the noise‐damaged mammalian cochlea. Int J Dev Neurosci 15: 601 – 617.en_US
dc.identifier.citedreferenceLefebvre PP, Malgrange B, Staecker H, Moghadass M, Van de Water TR, Moonen G. 1994. Neurotrophins affect survival and neuritogenesis by adult injured auditory neurons in vitro. Neuroreport 5: 865 – 868.en_US
dc.identifier.citedreferenceLinthicum FH, Fayad JN. 2009. Spiral ganglion cell loss is unrelated to segmental cochlear sensory system degeneration in humans. Otol Neurotol 30: 418 – 422.en_US
dc.identifier.citedreferenceLu B, Pang PT, Woo NH. 2005. The yin and yang of neurotrophin action. Nat Rev Neurosci 6: 603 – 614.en_US
dc.identifier.citedreferenceMerchan‐Perez A, Liberman MC. 1996. Ultrastructural differences among afferent synapses on cochlear hair cells: correlations with spontaneous discharge rate. J Comp Neurol 371: 208 – 221.en_US
dc.identifier.citedreferenceMerchant SN, Adams JC, Nadol JB. 2005. Pathology and pathophysiology of idiopathic sudden sensorineural hearing loss. Otol Neurotol 26: 151 – 160.en_US
dc.identifier.citedreferenceMiller JM, Chi DH, O'Keeffe LJ, Kruszka P, Raphael Y, Altschuler RA. 1997. Neurotrophins can enhance spiral ganglion cell survival after inner hair cell loss. Int J Dev Neurosci 15: 631 – 643.en_US
dc.identifier.citedreferenceMiller JM, Le Prell CG, Prieskorn DM, Wys NL, Altschuler RA. 2007. Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: effects of brain‐derived neurotrophic factor and fibroblast growth factor. J Neurosci Res 85: 1959 – 1969.en_US
dc.identifier.citedreferenceMorton NE. 1991. Genetic epidemiology of hearing impairment. Ann N Y Acad Sci 630: 16 – 31.en_US
dc.identifier.citedreferenceMou K, Hunsberger CL, Cleary JM, Davis RL. 1997. Synergistic effects of BDNF and NT‐3 on postnatal spiral ganglion neurons. J Comp Neurol 386: 529 – 539.en_US
dc.identifier.citedreferenceNadol JB. 1997. Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation. Otolaryngol Head Neck Surg 117: 220 – 228.en_US
dc.identifier.citedreferenceNadol JB, Shiao JY, Burgess BJ, Ketten DR, Eddington DK, Gantz BJ, Kos I, Montandon P, Coker NJ, Roland JT, Shallop JK. 2001. Histopathology of cochlear implants in humans. Ann Otol Rhinol Laryngol 110: 883 – 891.en_US
dc.identifier.citedreferenceNadol JB, Young YS, Glynn RJ. 1989. Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. Ann Otol Rhinol Laryngol 98: 411 – 416.en_US
dc.identifier.citedreferenceNakaizumi T, Kawamoto K, Minoda R, Raphael Y. 2004. Adenovirus‐mediated expression of brain‐derived neurotrophic factor protects spiral ganglion neurons from ototoxic damage. Audiol Neurootol 9: 135 – 143.en_US
dc.identifier.citedreferenceNayagam BA, Muniak MA, Ryugo DK. 2011. The spiral ganglion: connecting the peripheral and central auditory systems. Hear Res 278: 2 – 20.en_US
dc.identifier.citedreferenceNoushi F, Richardson RT, Hardman J, Clark G, O'leary S. 2005. Delivery of neurotrophin‐3 to the cochlea using alginate beads. Otol Neurotol 26: 528 – 533.en_US
dc.identifier.citedreferencePfingst BE, Bowling SA, Colesa DJ, Garadat SN, Raphael Y, Shibata SB, Strahl SB, Su GL, Zhou N. 2011. Cochlear infrastructure for electrical hearing. Hear Res 281: 65 – 73.en_US
dc.identifier.citedreferencePfingst BE, Sutton D. 1983. Relation of cochlear implant function to histopathology in monkeys. Ann N Y Acad Sci 405: 224 – 239.en_US
dc.identifier.citedreferencePirvola U, Ylikoski J, Palgi J, Lehtonen E, Arumäe U, Saarma M. 1992. Brain‐derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia. Proc Natl Acad Sci USA 89: 9915 – 9919.en_US
dc.identifier.citedreferenceRaphael Y, Altschuler RA. 2003. Structure and innervation of the cochlea. Brain Res Bull 60: 397 – 422.en_US
dc.identifier.citedreferenceRaphael Y, Frisancho JC, Roessler BJ. 1996. Adenoviral‐mediated gene transfer into guinea pig cochlear cells in vivo. Neurosci Lett 207: 137 – 141.en_US
dc.identifier.citedreferenceRejali D, Lee VA, Abrashkin KA, Humayun N, Swiderski DL, Raphael Y. 2007. Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons. Hear Res 228: 180 – 187.en_US
dc.identifier.citedreferenceRichardson RT, Noushi F, O'leary S. 2006. Inner ear therapy for neural preservation. Audiol Neurootol 11: 343 – 356.en_US
dc.identifier.citedreferenceRichardson RT, O'leary S, Wise A, Hardman J, Clark G. 2005. A single dose of neurotrophin‐3 to the cochlea surrounds spiral ganglion neurons and provides trophic support. Hear Res 204: 37 – 47.en_US
dc.identifier.citedreferenceRichardson RT, Wise A, O'leary S, Hardman J, Casley D, Clark G. 2004. Tracing neurotrophin‐3 diffusion and uptake in the guinea pig cochlea. Hear Res 198: 25 – 35.en_US
dc.identifier.citedreferenceRuan RS, Leong SK, Mark I, Yeoh KH. 1999. Effects of BDNF and NT‐3 on hair cell survival in guinea pig cochlea damaged by kanamycin treatment. Neuroreport 10: 2067 – 2071.en_US
dc.identifier.citedreferenceSanti PA, Mancini P. 1998. Cochlear Anatomy and Central Auditory Pathways. Otolaryngology Head and Neck Surgery, Ed C Cummings 3 rd Ed: 2803 – 2830.en_US
dc.identifier.citedreferenceShepherd RK, Coco A, Epp SB, Crook JM. 2005. Chronic depolarization enhances the trophic effects of brain‐derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss. J Comp Neurol 486: 145 – 158.en_US
dc.identifier.citedreferenceShepherd RK, Javel E. 1997. Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status. Hear Res 108: 112 – 144.en_US
dc.identifier.citedreferenceShibata SB, Cortez SR, Beyer LA, Wiler JA, Di Polo A, Pfingst BE, Raphael Y. 2010. Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol 223: 464 – 472.en_US
dc.identifier.citedreferenceShinohara T, Bredberg G, Ulfendahl M, Pyykkö I, Olivius NP, Kaksonen R, Lindström B, Altschuler R, Miller JM. 2002. Neurotrophic factor intervention restores auditory function in deafened animals. Proc Natl Acad Sci USA 99: 1657 – 1660.en_US
dc.identifier.citedreferenceShoji F, Miller AL, Mitchell A, Yamasoba T, Altschuler RA, Miller JM. 2000. Differential protective effects of neurotrophins in the attenuation of noise‐induced hair cell loss. Hear Res 146: 134 – 142.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.