Show simple item record

Down‐regulation of calcium/calmodulin‐dependent protein kinase kinase 2 by androgen deprivation induces castration‐resistant prostate cancer

dc.contributor.authorShima, Takashien_US
dc.contributor.authorMizokami, Atsushien_US
dc.contributor.authorMiyagi, Toruen_US
dc.contributor.authorKawai, Keiichien_US
dc.contributor.authorIzumi, Koujien_US
dc.contributor.authorKumaki, Misakoen_US
dc.contributor.authorOfude, Mitsuoen_US
dc.contributor.authorZhang, Jianen_US
dc.contributor.authorKeller, Evan T.en_US
dc.contributor.authorNamiki, Mikioen_US
dc.date.accessioned2012-11-07T17:04:37Z
dc.date.available2014-02-03T16:21:43Zen_US
dc.date.issued2012-12-01en_US
dc.identifier.citationShima, Takashi; Mizokami, Atsushi; Miyagi, Toru; Kawai, Keiichi; Izumi, Kouji; Kumaki, Misako; Ofude, Mitsuo; Zhang, Jian; Keller, Evan T.; Namiki, Mikio (2012). "Down‐regulation of calcium/calmodulin‐dependent protein kinase kinase 2 by androgen deprivation induces castration‐resistant prostate cancer ." The Prostate 72(16): 1789-1801. <http://hdl.handle.net/2027.42/94268>en_US
dc.identifier.issn0270-4137en_US
dc.identifier.issn1097-0045en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94268
dc.description.abstractBACKGROUND Conversion into androgen‐hypersensitive state and adaptation to the low concentration of androgen during ADT cause relapse of prostate cancer (PCa). It is important to identify differentially expressed genes between PCa and normal prostate tissues and to reveal the function of these genes that are involved in progression of PCa. METHODS We performed cDNA microarray analysis to identify differentially expressed genes, calcium/calmodulin‐dependent protein kinase kinase 2 (CAMKK2). Immunohistochemical analysis was conducted to investigate the relationship between the CAMKK2 expression level and prognosis. The function of CAMKK2 was assessed by generating CAMKK2 overexpressed LNCaP cells and by knockdown of CAMKK2. RESULTS We identified CAMKK2 overexpressed six times in PCa more than normal prostate by cDNA microarray analysis. Immunohistochemical analysis of CAMKK2 protein showed that CAMKK2 protein was expressed more in PCa than normal tissue. However, the expression in the high‐grade PCa diminished. Moreover, the narrowness of CAMKK2‐positive area before ADT was a poor prognostic factor. Androgen‐deprivation treatment from the medium in which LNCaP cells were cultured in the presence of 10 nM DHT repressed CAMKK2 expression. CAMKK2 overexpressed LNCaP cells (LNCaP/GFP‐CAMKK2) attenuated androgen‐sensitivity. Tumorigenesis of LNCaP/GFP‐CAMKK2 cells in male SCID mice was decreased compared with control cells irrespective of castration. Finally, knockdown of CAMKK2 mRNA in LNCaP cells induced androgen‐hypersensitivity and stimulated LNCaP cell proliferation. CONCLUSIONS Induction of androgen‐hypersensitivity after ADT may be involved in down‐regulation of CAMKK2. This result may provide new therapeutic approach to keep androgen‐sensitivity of PCa after ADT. Prostate 72:1789–1801, 2012. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherCAMKK2en_US
dc.subject.otherAMPKen_US
dc.subject.otherAndrogen‐Hypersensitivityen_US
dc.subject.otherProstate Canceren_US
dc.titleDown‐regulation of calcium/calmodulin‐dependent protein kinase kinase 2 by androgen deprivation induces castration‐resistant prostate canceren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Urology and Pathology, University of Michigan, Ann Arbor, Minnesotaen_US
dc.contributor.affiliationotherDepartment of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japanen_US
dc.contributor.affiliationotherDepartment of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, 13‐1 Takaramachi, Kanazawa, Ishikawa 920‐8640, Japan.en_US
dc.contributor.affiliationotherGuangxi Medical University, Pharmacology and Biomedical Sciences, Guangxi, Chinaen_US
dc.contributor.affiliationotherDivision of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japanen_US
dc.identifier.pmid22549914en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94268/1/22533_ftp.pdf
dc.identifier.doi10.1002/pros.22533en_US
dc.identifier.sourceThe Prostateen_US
dc.identifier.citedreferenceSchuur ER, Henderson GA, Kmetec LA, Miller JD, Lamparski HG, Henderson DR. Prostate‐specific antigen expression is regulated by an upstream enhancer. J Biol Chem 1996; 271 ( 12 ): 7043 – 7051.en_US
dc.identifier.citedreferenceMizokami A, Koh E, Izumi K, Narimoto K, Takeda M, Honma S, Dai J, Keller E, Namiki M. Prostate cancer stromal cells and LNCaP cells coordinately activate the androgen receptor through synthesis of T and DHT from DHEA. Endocr Relat Cancer 2009; 16: 1139 – 1155.en_US
dc.identifier.citedreferenceVeldscholte J, Voorhorst‐Ogink MM, Bolt‐de Vries J, van Rooij HC, Trapman J, Mulder E. Unusual specificity of the androgen receptor in the human prostate tumor cell line LNCaP: High affinity for progestagenic and estrogenic steroids. Biochim Biophys Acta 1990; 1052 ( 1 ): 187 – 194.en_US
dc.identifier.citedreferenceDuff J, McEwan IJ. Mutation of histidine 874 in the androgen receptor ligand‐binding domain leads to promiscuous ligand activation and altered p160 coactivator interactions. Mol Endocrinol 2005; 19 ( 12 ): 2943 – 2954.en_US
dc.identifier.citedreferenceKoivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J, Trapman J, Cleutjens K, Noordzij A, Visakorpi T, Kallioniemi OP. Androgen receptor gene amplification: A possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 1997; 57 ( 2 ): 314 – 319.en_US
dc.identifier.citedreferenceSteinkamp MP, O'Mahony OA, Brogley M, Rehman H, Lapensee EW, Dhanasekaran S, Hofer MD, Kuefer R, Chinnaiyan A, Rubin MA, Pienta KJ, Robins DM. Treatment‐dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res 2009; 69 ( 10 ): 4434 – 4442.en_US
dc.identifier.citedreferenceKang Z, Janne OA, Palvimo JJ. Coregulator recruitment and histone modifications in transcriptional regulation by the androgen receptor. Mol Endocrinol 2004; 18 ( 11 ): 2633 – 2648.en_US
dc.identifier.citedreferenceDebes JD, Comuzzi B, Schmidt LJ, Dehm SM, Culig Z, Tindall DJ. p300 regulates androgen receptor‐independent expression of prostate‐specific antigen in prostate cancer cells treated chronically with interleukin‐6. Cancer Res 2005; 65 ( 13 ): 5965 – 5973.en_US
dc.identifier.citedreferenceHolzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L, Ryan C, Smith S, Scher H, Scardino P, Reuter V, Gerald WL. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen‐responsive genes and mechanisms of therapy resistance. Am J Pathol 2004; 164 ( 1 ): 217 – 227.en_US
dc.identifier.citedreferenceCooper CS, Campbell C, Jhavar S. Mechanisms of Disease: Biomarkers and molecular targets from microarray gene expression studies in prostate cancer. Nat Clin Pract Urol 2007; 4 ( 12 ): 677 – 687.en_US
dc.identifier.citedreferenceTamura K, Furihata M, Tsunoda T, Ashida S, Takata R, Obara W, Yoshioka H, Daigo Y, Nasu Y, Kumon H, Konaka H, Namiki M, Tozawa K, Kohri K, Tanji N, Yokoyama M, Shimazui T, Akaza H, Mizutani Y, Miki T, Fujioka T, Shuin T, Nakamura Y, Nakagawa H. Molecular features of hormone‐refractory prostate cancer cells by genome‐wide gene expression profiles. Cancer Res 2007; 67 ( 11 ): 5117 – 5125.en_US
dc.identifier.citedreferenceSorensen KD, Orntoft TF. Discovery of prostate cancer biomarkers by microarray gene expression profiling. Expert Rev Mol Diagn 2010; 10 ( 1 ): 49 – 64.en_US
dc.identifier.citedreferenceLapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim U, Ekman P, DeMarzo AM, Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 2004; 101 ( 3 ): 811 – 816.en_US
dc.identifier.citedreferenceVarambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar‐Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419 ( 6907 ): 624 – 629.en_US
dc.identifier.citedreferenceFrigo DE, Howe MK, Wittmann BM, Brunner AM, Cushman I, Wang Q, Brown M, Means AR, McDonnell DP. CaM kinase kinase beta‐mediated activation of the growth regulatory kinase AMPK is required for androgen‐dependent migration of prostate cancer cells. Cancer Res 2011; 71 ( 2 ): 528 – 537.en_US
dc.identifier.citedreferenceMassie CE, Lynch A, Ramos‐Montoya A, Boren J, Stark R, Fazli L, Warren A, Scott H, Madhu B, Sharma N, Bon H, Zecchini V, Smith DM, Denicola GM, Mathews N, Osborne M, Hadfield J, Macarthur S, Adryan B, Lyons SK, Brindle KM, Griffiths J, Gleave ME, Rennie PS, Neal DE, Mills IG. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 2011; 30 ( 13 ): 2719 – 2733.en_US
dc.identifier.citedreferenceMizokami A, Gotoh A, Yamada H, Keller ET, Matsumoto T. Tumor necrosis factor‐alpha represses androgen sensitivity in the LNCaP prostate cancer cell line. J Urol 2000; 164 ( 3 Pt 1 ): 800 – 805.en_US
dc.identifier.citedreferenceIzumi K, Mizokami A, Li YQ, Narimoto K, Sugimoto K, Kadono Y, Kitagawa Y, Konaka H, Koh E, Keller ET, Namiki M. Tranilast inhibits hormone refractory prostate cancer cell proliferation and suppresses transforming growth factor beta1‐associated osteoblastic changes. Prostate 2009; 69 ( 11 ): 1222 – 1234.en_US
dc.identifier.citedreferenceMizokami A, Saiga H, Matsui T, Mita T, Sugita A. Regulation of androgen receptor by androgen and epidermal growth factor in a human prostatic cancer cell line, LNCaP. Endocrinol Jpn 1992; 39 ( 3 ): 235 – 243.en_US
dc.identifier.citedreferenceLi Y, Mizokami A, Izumi K, Narimoto K, Shima T, Zhang J, Dai J, Keller ET, Namiki M. CTEN/tensin 4 expression induces sensitivity to paclitaxel in prostate cancer. Prostate 2010; 70 ( 1 ): 48 – 60.en_US
dc.identifier.citedreferenceSonnenschein C, Olea N, Pasanen ME, Soto AM. Negative controls of cell proliferation: Human prostate cancer cells and androgens. Cancer Res 1989; 49 ( 13 ): 3474 – 3481.en_US
dc.identifier.citedreferenceNeuwirt H, Puhr M, Cavarretta IT, Mitterberger M, Hobisch A, Culig Z. Suppressor of cytokine signalling‐3 is up‐regulated by androgen in prostate cancer cell lines and inhibits androgen‐mediated proliferation and secretion. Endocr Relat Cancer 2007; 14 ( 4 ): 1007 – 1019.en_US
dc.identifier.citedreferencePelley RP, Chinnakannu K, Murthy S, Strickland FM, Menon M, Dou QP, Barrack ER, Reddy GP. Calmodulin‐androgen receptor (AR) interaction: Calcium‐dependent, calpain‐mediated breakdown of AR in LNCaP prostate cancer cells. Cancer Res 2006; 66 ( 24 ): 11754 – 11762.en_US
dc.identifier.citedreferenceSivanandam A, Murthy S, Chinnakannu K, Bai VU, Kim SH, Barrack ER, Menon M, Reddy GP. Calmodulin protects androgen receptor from calpain‐mediated breakdown in prostate cancer cells. J Cell Physiol 2011; 226 ( 7 ): 1889 – 1896.en_US
dc.identifier.citedreferenceHawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG. Calmodulin‐dependent protein kinase kinase‐beta is an alternative upstream kinase for AMP‐activated protein kinase. Cell Metab 2005; 2 ( 1 ): 9 – 19.en_US
dc.identifier.citedreferenceZhou J, Huang W, Tao R, Ibaragi S, Lan F, Ido Y, Wu X, Alekseyev YO, Lenburg ME, Hu GF, Luo Z. Inactivation of AMPK alters gene expression and promotes growth of prostate cancer cells. Oncogene 2009; 28 ( 18 ): 1993 – 2002.en_US
dc.identifier.citedreferenceZhou J, Yang Z, Tsuji T, Gong J, Xie J, Chen C, Li W, Amar S, Luo Z. LITAF and TNFSF15, two downstream targets of AMPK, exert inhibitory effects on tumor growth. Oncogene 2011; 30 ( 16 ): 1892 – 1900.en_US
dc.identifier.citedreferenceShackelford DB, Shaw RJ. The LKB1‐AMPK pathway: Metabolism and growth control in tumour suppression. Nat Rev Cancer 2009; 9 ( 8 ): 563 – 575.en_US
dc.identifier.citedreferencePark HU, Suy S, Danner M, Dailey V, Zhang Y, Li H, Hyduke DR, Collins BT, Gagnon G, Kallakury B, Kumar D, Brown ML, Fornace A, Dritschilo A, Collins SP. AMP‐activated protein kinase promotes human prostate cancer cell growth and survival. Mol Cancer Ther 2009; 8 ( 4 ): 733 – 741.en_US
dc.identifier.citedreferenceHadad SM, Baker L, Quinlan PR, Robertson KE, Bray SE, Thomson G, Kellock D, Jordan LB, Purdie CA, Hardie DG, Fleming S, Thompson AM. Histological evaluation of AMPK signalling in primary breast cancer. BMC Cancer 2009; 9: 307.en_US
dc.identifier.citedreferenceSun W, Wang L, Shyy JY, Sun W. Abstract 1914: Atorvastatin activates CaMKK‐beta as an upstream kinase of AMPK in endothelium. Circulation 2008; 118: S_404.en_US
dc.identifier.citedreferenceZheng X, Cui XX, Gao Z, Zhao Y, Lin Y, Shih WJ, Huang MT, Liu Y, Rabson A, Reddy B, Yang CS, Conney AH. Atorvastatin and celecoxib in combination inhibits the progression of androgen‐dependent LNCaP xenograft prostate tumors to androgen independence. Cancer Prev Res (Phila) 2010; 3 ( 1 ): 114 – 124.en_US
dc.identifier.citedreferenceFujimoto N, Miyamoto H, Mizokami A, Harada S, Nomura M, Ueta Y, Sasaguri T, Matsumoto T. Prostate cancer cells increase androgen sensitivity by increase in nuclear androgen receptor and androgen receptor coactivators; a possible mechanism of hormone‐resistance of prostate cancer cells. Cancer Invest 2007; 25 ( 1 ): 32 – 37.en_US
dc.identifier.citedreferenceSiegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: The impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011; 61 ( 4 ): 212 – 236.en_US
dc.identifier.citedreferenceHoimes CJ, Kelly WK. Redefining hormone resistance in prostate cancer. Ther Adv Med Oncol 2010; 2 ( 2 ): 107 – 123.en_US
dc.identifier.citedreferenceTaplin ME, Balk SP. Androgen receptor: A key molecule in the progression of prostate cancer to hormone independence. J Cell Biochem 2004; 91 ( 3 ): 483 – 490.en_US
dc.identifier.citedreferenceNishiyama T, Hashimoto Y, Takahashi K. The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. Clin Cancer Res 2004; 10 ( 21 ): 7121 – 7126.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.