Show simple item record

Incidence and clinical implications of ATM aberrations in chronic lymphocytic leukemia

dc.contributor.authorOuillette, Peteren_US
dc.contributor.authorLi, Jinghuien_US
dc.contributor.authorShaknovich, Ritaen_US
dc.contributor.authorLi, Yifengen_US
dc.contributor.authorMelnick, Arien_US
dc.contributor.authorShedden, Kerbyen_US
dc.contributor.authorMalek, Sami N.en_US
dc.date.accessioned2012-11-07T17:04:43Z
dc.date.available2014-02-03T16:21:43Zen_US
dc.date.issued2012-12en_US
dc.identifier.citationOuillette, Peter; Li, Jinghui; Shaknovich, Rita; Li, Yifeng; Melnick, Ari; Shedden, Kerby; Malek, Sami N. (2012). "Incidence and clinical implications of ATM aberrations in chronic lymphocytic leukemia ." Genes, Chromosomes and Cancer 51(12): 1125-1132. <http://hdl.handle.net/2027.42/94291>en_US
dc.identifier.issn1045-2257en_US
dc.identifier.issn1098-2264en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94291
dc.description.abstractA subset of chronic lymphocytic leukemia (CLL) carries mutations in ataxia telangiectasia mutated ( ATM ). Such ATM mutations may be particularly relevant in the setting of del11q, which invariably results in the deletion of one ATM allele. To improve our understanding of the frequency and type of ATM mutations that exist in CLL, we resequenced all ATM coding exons in 24 CLL with del11q using direct sequencing. We detected two missense mutations, resulting in an ATM mutation frequency of 8%; nonsense and frameshift mutations were not identified. Given the low ATM mutation frequency detected in this cohort, we proceeded with measurements of nonmutational ATM aberrations in CLL through analysis of the activation state of ATM in response to external irradiation. The phosphorylation state of ATM at Ser‐1981 was measured using quantitative immunoblotting in purified CLL cells isolated from 251 CLL patients; data were normalized to simultaneous measurements of total ATM protein and actin. Resulting p‐ATM/ATM and p‐ATM/actin ratios were subsequently analyzed for prognostic significance inclusive and exclusive of TP53 exons 2–10 mutations. From these analyses, conducted in a large prospectively enrolled CLL patient cohort, neither the p‐ATM/ATM nor the p‐ATM/actin ratios were found to be prognostic for short survival. These data in aggregate demonstrate a low frequency of ATM aberrations in an unselected CLL cohort and do not support a major prognostic role for ATM aberrations in CLL, thus motivating renewed research efforts aimed at understanding the pathobiology of 11q deletions in CLL. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.titleIncidence and clinical implications of ATM aberrations in chronic lymphocytic leukemiaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelOncology and Hematologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Statistics, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Internal Medicine, Division of Hematology and Oncology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109‐0936en_US
dc.contributor.affiliationotherWeill Cornell Medical College, Cornell University, NYC, NYen_US
dc.identifier.pmid22952040en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94291/1/21997_ftp.pdf
dc.identifier.doi10.1002/gcc.21997en_US
dc.identifier.sourceGenes, Chromosomes and Canceren_US
dc.identifier.citedreferenceShaknovich R, Figueroa ME, Melnick A. 2010. HELP (HpaII tiny fragment enrichment by ligation‐mediated PCR) assay for DNA methylation profiling of primary normal and malignant B lymphocytes. Methods Mol Biol 632: 191 – 201.en_US
dc.identifier.citedreferenceAusten B, Powell JE, Alvi A, Edwards I, Hooper L, Starczynski J, Taylor AM, Fegan C, Moss P, Stankovic T. 2005. Mutations in the ATM gene lead to impaired overall and treatment‐free survival that is independent of IGVH mutation status in patients with B‐CLL. Blood 106: 3175 – 3182.en_US
dc.identifier.citedreferenceAusten B, Skowronska A, Baker C, Powell JE, Gardiner A, Oscier D, Majid A, Dyer M, Siebert R, Taylor AM, Moss PA, Stankovic T. 2007. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol 25: 5448 – 5457.en_US
dc.identifier.citedreferenceBakkenist CJ, Kastan MB. 2003. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499 – 506.en_US
dc.identifier.citedreferenceBullrich F, Rasio D, Kitada S, Starostik P, Kipps T, Keating M, Albitar M, Reed JC, Croce CM. 1999. ATM mutations in B‐cell chronic lymphocytic leukemia. Cancer Res 59: 24 – 27.en_US
dc.identifier.citedreferenceChiorazzi N, Ferrarini M. 2011. Cellular origin(s) of chronic lymphocytic leukemia: Cautionary notes and additional considerations and possibilities. Blood 117: 1781 – 1791.en_US
dc.identifier.citedreferenceDohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M, Lichter P. 2000. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343: 1910 – 1916.en_US
dc.identifier.citedreferenceFegan C, Robinson H, Thompson P, Whittaker JA, White D. 1995. Karyotypic evolution in CLL: Identification of a new sub‐group of patients with deletions of 11q and advanced or progressive disease. Leukemia 9: 2003 – 2008.en_US
dc.identifier.citedreferenceGaudio E, Spizzo R, Paduano F, Luo Z, Efanov A, Palamarchuk A, Leber AS, Kaou M, Zanesi N, Bottoni A, Costinean S, Rassenti LZ, Nakamura T, Kipps TJ, Aqeilan RI, Pekarsky Y, Trapasso F, Croce CM. 2011. Tcl1 interacts with Atm and enhances NF‐kB activation in hematological malignancies. Blood 119: 180 – 187.en_US
dc.identifier.citedreferenceHerling M, Patel KA, Weit N, Lilienthal N, Hallek M, Keating MJ, Jones D. 2009. High TCL1 levels are a marker of B‐cell receptor pathway responsiveness and adverse outcome in chronic lymphocytic leukemia. Blood 114: 4675 – 4686.en_US
dc.identifier.citedreferenceJuliusson G, Oscier DG, Fitchett M, Ross FM, Stockdill G, Mackie MJ, Parker AC, Castoldi GL, Guneo A, Knuutila S, Elonen E, Gahrton G. 1990. Prognostic subgroups in B‐cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N Engl J Med 323: 720 – 724.en_US
dc.identifier.citedreferenceLozanski G, Ruppert AS, Heerem NA, Lozanski A, Luca DM, Gordon A, Gribben JG, Morrison VA, Rai KM, Marcucci G, Larson RA, Byrd JC. Variations of the ATM gene in chronic lymphocytic leukemia patients lack substantial impact on progression‐free survival and overall survival: A Cancer and Leukemia Group B Study. Leuk Lymphoma (in press).en_US
dc.identifier.citedreferenceOuillette P, Fossum S, Parkin B, Ding L, Bockenstedt P, Al‐Zoubi A, Shedden K, Malek SN. 2010. Aggressive chronic lymphocytic leukemia with elevated genomic complexity is associated with multiple gene defects in the response to DNA double‐strand breaks. Clin Cancer Res 16: 835 – 847.en_US
dc.identifier.citedreferenceOuillette P, Collins R, Shakhan S, Li J, Peres E, Kujawski L, Talpaz M, Kaminski M, Li C, Shedden K, Malek SN. 2011. Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia. Blood 118: 3051 – 3061.en_US
dc.identifier.citedreferenceQuesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L, Ramsay AJ, Bea S, Pinyol M, Martinez‐Trillos A, Lopez‐Guerra M, Colomer D, Navarro A, Baumann T, Aymerich M, Rozman M, Delgado J, Gine E, Hernandez JM, Gonzalez‐Diaz M, Puente DA, Velasco G, Freije JM, Tubio JM, Royo R, Gelpi JL, Orozco M, Pisano DG, Zamora J, Vazquez M, Valencia A, Himmelbauer H, Bayes M, Heath S, Gut M, Gut I, Estivill X, Lopez‐Guillermo A, Puente XS, Campo E, Lopez‐Otin C. 2011. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 44: 47 – 52.en_US
dc.identifier.citedreferenceSaiya‐Cork K, Collins R, Parkin B, Ouillette P, Kuizon E, Kujawski L, Erba H, Campagnaro E, Shedden K, Kaminski M, Malek SN. 2011. A pathobiological role of the insulin receptor in chronic lymphocytic leukemia. Clin Cancer Res 17: 2679 – 2692.en_US
dc.identifier.citedreferenceSchaffner C, Stilgenbauer S, Rappold GA, Dohner H, Lichter P. 1999. Somatic ATM mutations indicate a pathogenic role of ATM in B‐cell chronic lymphocytic leukemia. Blood 94: 748 – 753.en_US
dc.identifier.citedreferenceShanafelt TD, Hanson C, Dewald GW, Witzig TE, LaPlant B, Abrahamzon J, Jelinek DF, Kay NE. 2008. Karyotype evolution on fluorescent in situ hybridization analysis is associated with short survival in patients with chronic lymphocytic leukemia and is related to CD49d expression. J Clin Oncol 26: e5 – 6.en_US
dc.identifier.citedreferenceStankovic T, Weber P, Stewart G, Bedenham T, Murray J, Byrd PJ, Moss PA, Taylor AM. 1999. Inactivation of ataxia telangiectasia mutated gene in B‐cell chronic lymphocytic leukaemia. Lancet 353: 26 – 29.en_US
dc.identifier.citedreferenceStarostik P, Manshouri T, O'Brien S, Freireich E, Kantarjian H, Haidar M, Lerner S, Keating M, Albitar M. 1998. Deficiency of the ATM protein expression defines an aggressive subgroup of B‐cell chronic lymphocytic leukemia. Cancer Res 58: 4552 – 4557.en_US
dc.identifier.citedreferenceThompson RF, Reimers M, Khulan B, Gissot M, Richmond TA, Chen Q, Zheng X, Kim K, Greally JM. 2008. An analytical pipeline for genomic representations used for cytosine methylation studies. Bioinformatics 24: 1161 – 1167.en_US
dc.identifier.citedreferenceWang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L, Zhang W, Vartanov AR, Fernandes SM, Goldstein NR, Folco EG, Cibulskis K, Tesar B, Sievers QL, Shefler E, Gabriel S, Hacohen N, Reed R, Meyerson M, Golub TR, Lander ES, Neuberg D, Brown JR, Getz G, Wu CJ. 2011. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 365: 2497 – 2506.en_US
dc.identifier.citedreferenceYuille MR, Condie A, Hudson CD, Bradshaw PS, Stone EM, Matutes E, Catovsky D, Houlston RS. 2002. ATM mutations are rare in familial chronic lymphocytic leukemia. Blood 100: 603 – 609.en_US
dc.identifier.citedreferenceZhang X, Reis M, Khoriaty R, Li Y, Ouillette P, Samayoa J, Carter H, Karchin R, Li M, Diaz LA, Jr., Velculescu VE, Papadopoulos N, Kinzler KW, Vogelstein B, Malek SN. 2011. Sequence analysis of 515 kinase genes in chronic lymphocytic leukemia. Leukemia 25: 1908 – 1910.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.