Show simple item record

Modulation of Opioid Receptor Ligand Affinity and Efficacy Using Active and Inactive State Receptor Models

dc.contributor.authorAnand, Jessica P.en_US
dc.contributor.authorPurington, Lauren C.en_US
dc.contributor.authorPogozheva, Irina D.en_US
dc.contributor.authorTraynor, John R.en_US
dc.contributor.authorMosberg, Henry I.en_US
dc.date.accessioned2012-11-07T17:04:45Z
dc.date.available2014-01-07T14:51:08Zen_US
dc.date.issued2012-11en_US
dc.identifier.citationAnand, Jessica P.; Purington, Lauren C.; Pogozheva, Irina D.; Traynor, John R.; Mosberg, Henry I. (2012). "Modulation of Opioid Receptor Ligand Affinity and Efficacy Using Active and Inactive State Receptor Models." Chemical Biology & Drug Design 80(5). <http://hdl.handle.net/2027.42/94299>en_US
dc.identifier.issn1747-0277en_US
dc.identifier.issn1747-0285en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94299
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.subject.otherDelta Opioid Receptoren_US
dc.subject.otherMixed Efficacy Liganden_US
dc.subject.otherMu Opioid Receptoren_US
dc.subject.otherOpioiden_US
dc.subject.otherPeptideen_US
dc.subject.otherStructure‐Based Designen_US
dc.subject.otherG Protein‐Coupled Receptorsen_US
dc.titleModulation of Opioid Receptor Ligand Affinity and Efficacy Using Active and Inactive State Receptor Modelsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSubstance Abuse Research Center, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Pharmacology, Medical School, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.identifier.pmid22882801en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94299/1/cbdd.12014.pdf
dc.identifier.doi10.1111/cbdd.12014en_US
dc.identifier.sourceChemical Biology & Drug Designen_US
dc.identifier.citedreferencePrzydzial M.J., Pogozheva I.D., Andrews S.M., Tharp T.A., Traynor J.R., Mosberg H.I. ( 2005 ) Roles of residues 3 and 4 in cyclic tetrapeptide ligand recognition by the kappa opioid receptor. J Pept Res; 26: 333 – 342.en_US
dc.identifier.citedreferenceBalboni G., Guerrini R., Salvadori S., Bianchi C., Rizzi D., Bryant S.D. et al. ( 2002 ) Evaluation of the Dmt‐Tic pharmacophore: conversion of a potent delta‐opioid receptor antagonist into a potent delta agonist and ligands with mixed properties. J Med Chem; 45: 713 – 720.en_US
dc.identifier.citedreferenceBalboni G., Salvadori S., Guerrini R., Negri L., Giannini E., Jinsmaa Y. et al. ( 2002 ) Potent delta‐opioid receptor agonists containing the Dmt‐Tic pharmacophore. J Med Chem; 45: 5556 – 5563.en_US
dc.identifier.citedreferenceCheng K., Kim I.J., Lee M.J., Adah S.A., Raymond T.J., Bilsky E.J. et al. ( 2007 ) Opioid ligands with mixed properties from substituted enatiomeric N‐ phenethyl‐5‐phenylmorphans: synthesis of mu‐agonist delta‐antagonist and delta‐inverse agonists. Org Biomol Chem; 5: 1177 – 1190.en_US
dc.identifier.citedreferenceHeibel A.C., Lee Y.S., Bilsky E.J., Guivelis D., Deschamps J.R., Parrish D. et al. ( 2005 ) Synthesis and structure‐activity relationships of a potent mu‐agonist delta‐antagonist and an exceedingly potent antinociceptive in the enantiomeric C9‐substituted 5‐(3‐hydroxyphenyl)‐ N‐ phenylethylmorphan series. J Med Chem; 50: 3765 – 3776.en_US
dc.identifier.citedreferenceSalvadori S., Guerrini R., Balboni G., Bianchi C., Bryant S.D., Cooper P.S. et al. ( 1999 ) Further studies on the Dmt‐Tic pharmacophore: hydrophobic substituents at the C‐terminus endow delta antagonists to manifest mu agonism of mu antagonism. J Med Chem; 42: 5010 – 5019.en_US
dc.identifier.citedreferenceYamamoto T., Nair P., Vagner J., Largent‐Milnes T., Davis P., Ma S.W. et al. ( 2008 ) A structure‐activity relationship study and combinatorial synthetic approach to C‐terminal modified bifunctional peptides that are Delta/Mu Opioid receptor agonists and neurokinin 1 receptor antagonists. J Med Chem; 51: 1369 – 1376.en_US
dc.identifier.citedreferenceSchiller P.W., Fundytus M.E., Merovitz L., Weltrowska G., Nguten T.M.‐D., Lemieux C. et al. ( 1999 ) The opioid mu agonist/delta antagonist DIPP‐NH2(psi) produces a potent analgesic effect, no physical dependence and less tolerance than morphine in rate. J Med Chem; 42: 3520 – 3526.en_US
dc.identifier.citedreferenceSchmidt R., Vogel D., Mrestani‐Klaus C., Brandt W., Neubert K., Chung N.N. et al. ( 1994 ) Cyclic beta‐casomorphin analgoues with mixed mu agonist/delta antagonist properties: synthesis, pharmacological characterization and conformational aspects. J Med Chem; 37: 1136 – 1144.en_US
dc.identifier.citedreferencePrzydzial M.J., Pogozheva I.D., Ho J.C., Bosse K.E., Sawyer E., Traynor J.R. et al. ( 2005 ) Design of high affinity cyclic pentapeptide ligands for the kappa opioid receptors. J Pept Res; 66: 255 – 262.en_US
dc.identifier.citedreferenceFowler C.B., Pogozheva I.D., Lomize A.L., LeVine H., Mosberg H.I. ( 2004 ) Refinement of a homology model of the Mu‐opioid receptor using distance constraints from Intrinsic and engineered zinc‐binding sites. Biochemistry; 43: 8700 – 8710.en_US
dc.identifier.citedreferenceFowler C.B., Pogozheva I.D., Lomize A.L., LeVine H., Mosberg H.I. ( 2004 ) Complex of an active Mu‐opioid receptor with a cyclic peptide agonist modeled from experimental constraints. Biochemistry; 43: 15796 – 15810.en_US
dc.identifier.citedreferencePogozheva I.D., Lomize A.L., Mosberg H.I. ( 1997 ) The transmembrane 7‐alpha‐bundle of Rhodopsin: distance geometry calculations with hydrogen bonding constraints. Biophysics; 72: 1963 – 1985.en_US
dc.identifier.citedreferencePogozheva I.D., Lomize A.L., Mosberg H.I. ( 1998 ) Opioid receptor three‐dimensional structures from distance geometry calculations with hydrogen bonding constraints. Biophysics; 75: 612 – 634.en_US
dc.identifier.citedreferencePogozheva I.D., Przydzial M.J., Mosberg H.I. ( 2005 ) Homology modeling of opioid receptor‐ligand complexes using experimental constraints. AAPS Journal; 7: 43 – 57.en_US
dc.identifier.citedreferencePfeiffer A., Brantl V., Herz A., Emrich H.M. ( 1986 ) Psychotomimesis mediated by kappa opioid receptors. Science; 233: 774 – 776.en_US
dc.identifier.citedreferenceSchiller P.W. ( 2009 ) Bi‐ or multifunctional opioid peptide drugs. Life Sci; 86: 598 – 603.en_US
dc.identifier.citedreferenceLee K.O., Akil H., Woods J.H., Traynor J.R. ( 1999 ) Differential binding properties of oripavines at cloned mu‐ and delta‐opioid receptors. Eur J Pharmacol; 32: 3 – 30.en_US
dc.identifier.citedreferenceHusbands S.M., Neilan C.L., Broadbear J., Grundt P., Breeden S., Aceto M.D. et al. ( 2005 ) BU74, a complex oripavine derivative with potent kappa opioid receptor agonism and delayed opioid antagonism. Eur J Pharmacol; 11: 7 – 35.en_US
dc.identifier.citedreferenceTraynor J.R., Nahorski S.R. ( 1995 ) Modulation by mu‐opioid agonists of guanosine‐5′‐O(3‐[35S]thio)triphosphate binding to membranes from human neuroblastoma SHY5Y cells. Mol Pharmacol; 84: 8 – 54.en_US
dc.identifier.citedreferenceKufareva I., Rueda M., Katritch V., Stevens R.C., Abagyan R., participants G.D. ( 2011 ) Status of GPCR modeling and docking as reflected by community‐wide GPCR Dock 2010 assesment. Structure; 19: 1108 – 1126.en_US
dc.identifier.citedreferenceCongreve M., Langmead C.J., Mason J.S., Marshall F.H. ( 2011 ) Progress in structure based drug design for G protein‐coupled receptors. J Med Chem; 54: 4283 – 4311.en_US
dc.identifier.citedreferenceMichino M., Abola E., Participants G.D., Charles L.Brooks.I., Dixon J.S., Moult J. et al. ( 2008 ) Community‐wide assesment of GPCR structure modeling and ligand docking. Nat Rev Drug Discov; 8: 455 – 463.en_US
dc.identifier.citedreferenceMosberg H.I., Omnaas J.R., Smith C.B., Medzihradsky F. ( 1988 ) Cyclic disulfide and dithioether‐containing opioid tetrapeptides: development of a ligand with enhanced delta opioid receptor selectivity and potency. Life Sci; 43: 1013 – 1020.en_US
dc.identifier.citedreferenceManglik A., Kruse A.C., Kobilka T.S., Thian F.S., Mathiesin J.M., Sunahara R.K. et al. ( 2012 ) Crystal structure of the mu opioid receptor bound to a morphinan antagonist. Nature; 485: 321 – 326.en_US
dc.identifier.citedreferenceWu H., Wacker D., Mileni M., Katritch V., Han G.W., Vardy E. et al. ( 2012 ) Structure of the human kappa opioid receptor in complex with JDTic. Nature; 485: 327 – 332.en_US
dc.identifier.citedreferenceGranier S., Manglik A., Kruse A.C., Kobilka T.S., Thian F.S., Weis W.I., Kobilka B.K. ( 2012 ) Structure of the δ‐opioid receptor bound to naltrindole. Nature; 485: 400 – 404.en_US
dc.identifier.citedreferenceLomize A.L., Flippen‐Anderson J.L., George C., Mosberg H.I. ( 1994 ) Conformational analysis of the delta receptor selective cyclic opioid peptide Tyr‐c[DCys‐Phe‐DPen]OH (JOM13). Comparison of X‐ray cystallographic structures, molecular mechanics simulations, and 1H NMR data. J Am Chem Soc; 116: 429 – 436.en_US
dc.identifier.citedreferenceMosberg H.I., Fowler C.B. ( 2002 ) Development and validation of opioid ligand‐receptor interaction models: the structural basis of mu vs. delta selectivity. J Pept Res; 60: 329 – 335.en_US
dc.identifier.citedreferenceMorphy R., Kay C., Rankovic Z. ( 2004 ) From magic bullets to designed multiple ligands. Res Focus Rev; 9: 641 – 652.en_US
dc.identifier.citedreferenceMorphy R., Rankovic Z. ( 2009 ) Designing multiple ligands – medicinal chemistry strategies and challenges. Curr Pharm Des; 15: 587 – 600.en_US
dc.identifier.citedreferenceAbdelhamid E.E., Sultana M., Portoghese P.S., Takemori A.E. ( 1991 ) Selective blockage of the delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther; 258: 299 – 303.en_US
dc.identifier.citedreferenceFundytus M.E., Schiller P.W., Shapiro M., Weltrowska H., Coderre T.J. ( 1995 ) Attenuation of morphine tolerance and dependence with the highly selective delta opioid receptor antagonist TIPP(psi). Eur J Pharmacol; 286: 105 – 108.en_US
dc.identifier.citedreferenceHepburn M.J., Little P.J., Gringas J., Khun C.M. ( 1997 ) Differential effects of naltrindole on morphine‐induced tolerance and physical dependence in rate. J Pharmacol Exp Ther; 281: 1350 – 1356.en_US
dc.identifier.citedreferencePurington L.C., Pohozheva I.D., Traynor J.R., Mosberg H.I. ( 2009 ) Pentapeptides displaying mu opioid receptor agonist and delta opioid receptor partial agonist/antagonist properties. J Med Chem; 52: 7724 – 7731.en_US
dc.identifier.citedreferencePurington L.C., Sobczyk‐Kojiro K., Pogozheva I.D., Traynor J.R., Mosberg H.I. ( 2011 ) Development and in vitro characterization of a novel bifunctional mu‐agonist/delta‐antagonist opioid tetrapeptide. J Chem Biol; 6: 1375 – 1381.en_US
dc.identifier.citedreferenceAnathan S., Kezar H.S., Carter R.L., Saini S.K., Rice K.C., Wells J.L., Davis P., Xu H., Dersch C.M., Bilsky E.J., Porreca F., Rothman R.B. ( 1999 ) Synthesis, opioid receptor binding, and biological activities of naltrexone‐derived pyrido‐ and pyrimidomorphans. J Med Chem; 42: 3527 – 3538.en_US
dc.identifier.citedreferenceAnathan S., Khare N.K., Saini S.K., Seitz L.E., Bartlett J.L., Davis P., Davis P., Xu H., Dersch C.M., Bilsky E.J., Porreca F., Rothman R.B. ( 2004 ) Identification of opioid ligands possessing mixed mu agonist/delta antagonist activity among pyridomorphans derived from naloxone, oxymorphone, and hydromorphone. J Med Chem; 47: 1400 – 1412.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.