Show simple item record

Detection of disordered regions in globular proteins using 13 C‐detected NMR

dc.contributor.authorGray, Felicia L. V.en_US
dc.contributor.authorMurai, Marcelo J.en_US
dc.contributor.authorGrembecka, Jolantaen_US
dc.contributor.authorCierpicki, Tomaszen_US
dc.date.accessioned2012-12-11T17:37:19Z
dc.date.available2014-02-03T16:21:44Zen_US
dc.date.issued2012-12en_US
dc.identifier.citationGray, Felicia L. V.; Murai, Marcelo J.; Grembecka, Jolanta; Cierpicki, Tomasz (2012). "Detection of disordered regions in globular proteins using 13 C‐detected NMR." Protein Science 21(12): 1954-1960. <http://hdl.handle.net/2027.42/94460>en_US
dc.identifier.issn0961-8368en_US
dc.identifier.issn1469-896Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94460
dc.description.abstractCharacterization of disordered regions in globular proteins constitutes a significant challenge. Here, we report an approach based on 13 C‐detected nuclear magnetic resonance experiments for the identification and assignment of disordered regions in large proteins. Using this method, we demonstrate that disordered fragments can be accurately identified in two homologs of menin, a globular protein with a molecular weight over 50 kDa. Our work provides an efficient way to characterize disordered fragments in globular proteins for structural biology applications.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherProtein Disorderen_US
dc.subject.otherStructural Biologyen_US
dc.subject.otherNMR Spectroscopyen_US
dc.subject.otherMeninen_US
dc.titleDetection of disordered regions in globular proteins using 13 C‐detected NMRen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pathology, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumProgram in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Pathology, University of Michigan, 1150 W. Medical Center Drive, MSRB1 4516, Ann Arbor, MI 48109en_US
dc.identifier.pmid23047544en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94460/1/2174_ftp.pdf
dc.identifier.doi10.1002/pro.2174en_US
dc.identifier.sourceProtein Scienceen_US
dc.identifier.citedreferenceYokoyama A, Somervaille TC, Smith KS, Rozenblatt‐Rosen O, Meyerson M, Cleary ML ( 2005 ) The menin tumor suppressor protein is an essential oncogenic cofactor for MLL‐associated leukemogenesis. Cell 123: 207 – 218.en_US
dc.identifier.citedreferenceChen GQ, Sun Y, Jin R, Gouaux E ( 1998 ) Probing the ligand binding domain of the GluR2 receptor by proteolysis and deletion mutagenesis defines domain boundaries and yields a crystallizable construct. Protein Sci 7: 2623 – 2630.en_US
dc.identifier.citedreferenceArmstrong N, Sun Y, Chen GQ, Gouaux E ( 1998 ) Structure of a glutamate‐receptor ligand‐binding core in complex with kainate. Nature 395: 913 – 917.en_US
dc.identifier.citedreferencePantazatos D, Kim JS, Klock HE, Stevens RC, Wilson IA, Lesley SA, Woods VL Jr ( 2004 ) Rapid refinement of crystallographic protein construct definition employing enhanced hydrogen/deuterium exchange MS. Proc Natl Acad Sci USA 101: 751 – 756.en_US
dc.identifier.citedreferenceSharma S, Zheng H, Huang YJ, Ertekin A, Hamuro Y, Rossi P, Tejero R, Acton TB, Xiao R, Jiang M, Zhao L, Ma LC, Swapna GV, Aramini JM, Montelione GT ( 2009 ) Construct optimization for protein NMR structure analysis using amide hydrogen/deuterium exchange mass spectrometry. Proteins 76: 882 – 894.en_US
dc.identifier.citedreferenceDyson JH, Wright PE ( 2004 ) Unfolded proteins and protein folding studied by NMR. Chem Rev 104: 3607 – 3622.en_US
dc.identifier.citedreferenceMäntylahti S, Hellman M, Permi P ( 2011 ) Extension of the HA‐detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main‐chain assignment of intrinsically disordered proteins. J Biomol NMR 49: 99 – 109.en_US
dc.identifier.citedreferenceFelli IC, Pierattelli R ( 2012 ) Recent progress in NMR spectroscopy: toward the study of intrinsically disordered proteins of increasing size and complexity. IUBMB Life 64: 473 – 481.en_US
dc.identifier.citedreferenceBermel W, Bertini I, Felli IC, Lee YM, Luchinat C, Pierattelli R ( 2006 ) Protonless NMR experiments for sequence‐specific backbone nuclei in unfolded proteins. J Am Chem Soc 128: 3918 – 3919.en_US
dc.identifier.citedreferenceHsu ST, Bertoncini CW, Dobson CM ( 2009 ) Use of protonless NMR spectroscopy to alleviate the loss of information resulting from exchange‐broadening. J Am Chem Soc 131: 7222 – 7223.en_US
dc.identifier.citedreferencePérez Y, Gairí M, Pons M, Bernadó P ( 2009 ) Structural characterization of the natively unfolded N‐terminal domain of human c‐Src kinase: insights into the role of phosphorylation of the unique domain. J Mol Biol 391: 136 – 148.en_US
dc.identifier.citedreferenceSkora L, Becker S, Zweckstetter M ( 2010 ) Molten globule precursor states are conformationally correlated to amyloid fibrils of human beta‐2‐microglobulin. J Am Chem Soc 132: 9223 – 9225.en_US
dc.identifier.citedreferenceGrembecka J, Belcher AM, Hartley T, Cierpicki T ( 2010 ) Molecular basis of the mixed lineage leukemia‐menin interaction: implications for targeting mixed lineage leukemias. J Biol Chem 285: 40690 – 40698.en_US
dc.identifier.citedreferenceChandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert‐Buck MR, Debelenko LV, Zhuang Z, Lubensky IA, Liotta LA, Crabtree JS, Wang Y, Roe BA, Weisemann J, Boguski MS, Agarwal SK, Kester MB, Kim YS, Heppner C, Dong Q, Spiegel AM, Burns AL, Marx SJ ( 1997 ) Positional cloning of the gene for multiple endocrine neoplasia‐type 1. Science 276: 404 – 407.en_US
dc.identifier.citedreferenceMurai MJ, Chruszcz M, Reddy G, Grembecka J, Cierpicki T ( 2011 ) Crystal structure of menin reveals binding site for mixed lineage leukemia (MLL) protein. J Biol Chem 286: 31742 – 31748.en_US
dc.identifier.citedreferenceHuang J, Gurung B, Wan B, Matkar S, Veniaminova NA, Wan K, Merchant JL, Hua X, Lei M ( 2012 ) The same pocket in menin binds both MLL and JunD but has opposite effect on transcription. Nature 482: 542 – 546.en_US
dc.identifier.citedreferenceBermel W, Bertini I, Duma L, Felli IC, Emsley L, Pierattelli R, Vasos PR ( 2005 ) Complete assignment of heteronuclear protein resonances by protonless NMR spectroscopy. Angew Chem Int Ed Engl 44: 3089 – 3092.en_US
dc.identifier.citedreferenceBermel W, Bertini I, Felli IC, Pierattelli R, Vasos PR ( 2005 ) A selective experiment for the sequential protein backbone assignment from 3D heteronuclear spectra. J Mag Res 172: 324 – 328.en_US
dc.identifier.citedreferenceTamiola K, Acar B, Mulder FA ( 2010 ) Sequence‐specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 132: 18000 – 18003.en_US
dc.identifier.citedreferenceSchwarzinger S, Kroon GJ, Foss TR, Chung J, Wright PE, Dyson HJ ( 2001 ) Sequence‐dependent correction of random coil NMR chemical shifts. J Am Chem Soc 123: 2970 – 2978.en_US
dc.identifier.citedreferenceWang Y, Jardetzky O ( 2002 ) Probability‐based protein secondary structure identification using combined NMR chemical‐shift data. Protein Sci 11: 852 – 861.en_US
dc.identifier.citedreferenceShi A, Murai MJ, He S, Lund G, Hartley T, Purohit T, Reedy G, Chruszcz M, Grembecka J, Cierpicki T (in press) Structural insights into inhibition of the bivalent menin‐MLL interaction by small molecules in leukemia. Blood; e‐pub: blood‐2012‐05‐429274v1.en_US
dc.identifier.citedreferenceSpraggon G, Pantazatos D, Klock HE, Wilson IA, Woods VL Jr, Lesley SA ( 2004 ) On the use of DXMS to produce more crystallizable proteins: structures of the T. maritima proteins TM0160 and TM1171. Protein Sci 13: 3187 – 3199.en_US
dc.identifier.citedreferenceDelaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A ( 1995 ) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6: 277 – 293.en_US
dc.identifier.citedreferenceDyson HJ, Wright PE ( 2005 ) Intrinsically unstructured proteins and their functions. Nat Rev Chem Biol 6: 197 – 208.en_US
dc.identifier.citedreferenceDunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z ( 2002 ) Intrinsic disorder and protein function. Biochemistry 41: 6573 – 6582.en_US
dc.identifier.citedreferenceWard JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT ( 2004 ) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337: 635 – 645.en_US
dc.identifier.citedreferenceWang RY, Han Y, Krassovsky K, Sheffler W, Tyka M, Baker D ( 2011 ) Modeling disordered regions in proteins using Rosetta. PloS One 6: e22060.en_US
dc.identifier.citedreferenceBordoli L, Kiefer F, Schwede T ( 2007 ) Assessment of disorder predictions in CASP7. Proteins 69: 129 – 136.en_US
dc.identifier.citedreferenceHe B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK ( 2009 ) Predicting intrinsic disorder in proteins: an overview. Cell Res 19: 929 – 949.en_US
dc.identifier.citedreferenceDeng X, Eickholt J, Cheng J ( 2012 ) A comprehensive overview of computational protein disorder prediction methods. Mol BioSyst 8: 114 – 121.en_US
dc.identifier.citedreferenceLi X, Wang J, Shi Y ( 2011 ) Structural mechanisms of DIAP1 auto‐inhibition and DIAP1‐mediated inhibition of drICE. Nat Commun 2: 408.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.