Show simple item record

Enhancing the antitumor activity of ErbB blockade with histone deacetylase (HDAC) inhibition

dc.contributor.authorChinnaiyan, Prakashen_US
dc.contributor.authorVarambally, Sooryanarayanaen_US
dc.contributor.authorTomlins, Scott A.en_US
dc.contributor.authorRay, Somaen_US
dc.contributor.authorHuang, Shyhminen_US
dc.contributor.authorChinnaiyan, Arul M.en_US
dc.contributor.authorHarari, Paul M.en_US
dc.date.accessioned2012-12-11T17:37:19Z
dc.date.available2012-12-11T17:37:19Z
dc.date.issued2006-02-15en_US
dc.identifier.citationChinnaiyan, Prakash; Varambally, Sooryanarayana; Tomlins, Scott A.; Ray, Soma; Huang, Shyhmin; Chinnaiyan, Arul M.; Harari, Paul M. (2006). "Enhancing the antitumor activity of ErbB blockade with histone deacetylase (HDAC) inhibition." International Journal of Cancer 118(4): 1041-1050. <http://hdl.handle.net/2027.42/94461>en_US
dc.identifier.issn0020-7136en_US
dc.identifier.issn1097-0215en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94461
dc.description.abstractMolecular inhibition of the ErbB signaling pathway represents a promising cancer treatment strategy. Preclinical studies suggest that enhancement of antitumor activity can be achieved by maximizing ErbB signaling inhibition. Using cDNA microarrays, we identified histone deacetylase (HDAC) inhibitors as having strong potential to enhance the effects of anti‐ErbB agents. Studies using a 20,000 element (20K) cDNA microarray demonstrate decreased transcript expression of ErbB1 (epidermal growth factor receptor) and ErbB2 in DU145 (prostate) and ErbB2 in SKBr3 (breast) cancer cell lines. Additional changes in the DU145 gene expression profile with potential interaction to ErbB signaling include down‐regulation of caveolin‐1 and hypoxia inducible factor 1‐α (HIF1‐α), and up‐regulation of gelsolin, p19(INK4D) and Nur77. Findings were validated using real time RT‐PCR and Western blot analysis. Enhanced proliferative inhibition, apoptosis induction and signaling inhibition were demonstrated when combining HDAC inhibition with ErbB blockade. These results suggest that used cooperatively, anti‐ErbB agents and HDAC inhibitors may offer a promising strategy of dual targeted therapy. Additionally, microarray data suggest that the beneficial interaction of these agents may not derive solely from modulation of ErbB expression, but may result from effects on other oncogenic processes including angiogenesis, invasion and cell cycle kinetics. © 2005 Wiley‐Liss, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherEGFRen_US
dc.subject.otherSAHAen_US
dc.subject.otherErbBen_US
dc.subject.otherHDAC Inhibitoren_US
dc.titleEnhancing the antitumor activity of ErbB blockade with histone deacetylase (HDAC) inhibitionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelOncology and Hematologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pathology, University of Michigan Medical School, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Human Oncology, University of Wisconsin Comprehensive Cancer Center, 600 Highland Avenue, Madison, WI 53792‐0600, USAen_US
dc.contributor.affiliationotherDepartment of Human Oncology, University of Wisconsin, Madison, WI, USAen_US
dc.identifier.pmid16152586en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94461/1/21465_ftp.pdf
dc.identifier.doi10.1002/ijc.21465en_US
dc.identifier.sourceInternational Journal of Canceren_US
dc.identifier.citedreferenceKim YN, Wiepz GJ, Guadarrama AG, Bertics PJ. Epidermal growth factor‐stimulated tyrosine phosphorylation of caveolin‐1. Enhanced caveolin‐1 tyrosine phosphorylation following aberrant epidermal growth factor receptor status. J Biol Chem 2000; 275: 7481 – 91.en_US
dc.identifier.citedreferenceJanmaat ML, Kruyt FA, Rodriguez JA, Giaccone G. Response to epidermal growth factor receptor inhibitors in non‐small cell lung cancer cells: limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal‐regulated kinase or akt kinase pathways. Clin Cancer Res 2003; 9: 2316 – 26.en_US
dc.identifier.citedreferenceJin W, Wu L, Liang K, Liu B, Lu Y, Fan Z. Roles of the PI‐3K and MEK pathways in Ras‐mediated chemoresistance in breast cancer cells. Br J Cancer 2003; 89: 185 – 91.en_US
dc.identifier.citedreferenceMcKenna WG, Muschel RJ, Gupta AK, Hahn SM, Bernhard EJ. The RAS signal transduction pathway and its role in radiation sensitivity. Oncogene 2003; 22: 5866 – 75.en_US
dc.identifier.citedreferenceMarks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001; 1: 194 – 02.en_US
dc.identifier.citedreferenceGlaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK. Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2003; 2: 151 – 63.en_US
dc.identifier.citedreferenceRichon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene‐associated histone acetylation. Proc Natl Acad Sci U S A 2000; 97: 10014 – 9.en_US
dc.identifier.citedreferenceKato K, Hida Y, Miyamoto M, Hashida H, Shinohara T, Itoh T, Okushiba S, Kondo S, Katoh H. Overexpression of caveolin‐1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer 2002; 94: 929 – 33.en_US
dc.identifier.citedreferenceKim YN, Dam P, Bertics PJ. Caveolin‐1 phosphorylation in human squamous and epidermoid carcinoma cells: dependence on ErbB1 expression and Src activation. Exp Cell Res 2002; 280: 134 – 47.en_US
dc.identifier.citedreferenceYang G, Truong LD, Wheeler TM, Thompson TC. Caveolin‐1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res 1999; 59: 5719 – 23.en_US
dc.identifier.citedreferenceGoh M, Chen F, Paulsen MT, Yeager AM, Dyer ES, Ljungman M. Phenylbutyrate attenuates the expression of Bcl‐X(L), DNA‐PK, caveolin‐1, and VEGF in prostate cancer cells. Neoplasia 2001; 3: 331 – 8.en_US
dc.identifier.citedreferenceDeroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N, Blacher S, Verdin E, Foidart JM, Nusgens BV, Castronovo V. Histone deacetylases inhibitors as anti‐angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 2002; 21: 427 – 36.en_US
dc.identifier.citedreferenceKim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor‐induced angiogenesis suppresses tumour growth in vivo. Nature 1993; 362: 841 – 4.en_US
dc.identifier.citedreferenceStrohmeyer D, Rossing C, Bauerfeind A, Kaufmann O, Schlechte H, Bartsch G, Loening S. Vascular endothelial growth factor and its correlation with angiogenesis and p53 expression in prostate cancer. Prostate 2000; 45: 216 – 24.en_US
dc.identifier.citedreferenceHuang SM, Harari PM. Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin Cancer Res 2000; 6: 2166 – 74.en_US
dc.identifier.citedreferenceKedar D, Baker CH, Killion JJ, Dinney CP, Fidler IJ. Blockade of the epidermal growth factor receptor signaling inhibits angiogenesis leading to regression of human renal cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 2002; 8: 3592 – 600.en_US
dc.identifier.citedreferenceMie Y, Kim SH, Kim HS, Jin M, Nakajima H, Jeong H, Kim KW. Inhibition of hypoxia‐induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF‐1alpha activity. Biochem Biophys Res Commun 2003; 300: 241 – 6.en_US
dc.identifier.citedreferenceWilliams RJ. Trichostatin A, an inhibitor of histone deacetylase, inhibits hypoxia‐induced angiogenesis. Expert Opin Investig Drugs 2001; 10: 1571 – 3.en_US
dc.identifier.citedreferenceYeo EJ, Chun YS, Cho YS, Kim J, Lee JC, Kim MS, Park JW. YC‐1: a potential anticancer drug targeting hypoxia‐inducible factor 1. J Natl Cancer Inst 2003; 95: 516 – 25.en_US
dc.identifier.citedreferenceDai S, Huang ML, Hsu CY, Chao KS. Inhibition of hypoxia inducible factor 1alpha causes oxygen‐independent cytotoxicity and induces p53 independent apoptosis in glioblastoma cells. Int J Radiat Oncol Biol Phys 2003; 55: 1027 – 36.en_US
dc.identifier.citedreferenceHan JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW, Kwon HK, Hong S, Lee HY, Lee YW, Lee HW. Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res 2000; 60: 6068 – 74.en_US
dc.identifier.citedreferenceZhu WG, Dai Z, Ding H, Srinivasan K, Hall J, Duan W, Villalona‐Calero MA, Plass C, Otterson GA. Increased expression of unmethylated CDKN2D by 5‐aza‐2′‐deoxycytidine in human lung cancer cells. Oncogene 2001; 20: 7787 – 96.en_US
dc.identifier.citedreferenceHazel TG, Nathans D, Lau LF. A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proc Natl Acad Sci U S A 1988; 85: 8444 – 8.en_US
dc.identifier.citedreferenceMilbrandt J. Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron 1988; 1: 183 – 8.en_US
dc.identifier.citedreferenceWu WS, Xu ZX, Ran R, Meng F, Chang KS. Promyelocytic leukemia protein PML inhibits Nur77‐mediated transcription through specific functional interactions. Oncogene 2002; 21: 3925 – 33.en_US
dc.identifier.citedreferenceUemura H, Chang C. Antisense TR3 orphan receptor can increase prostate cancer cell viability with etoposide treatment. Endocrinology 1998; 139: 2329 – 34.en_US
dc.identifier.citedreferenceLin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC, Zhang XK. Conversion of Bcl‐2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 2004; 116: 527 – 40.en_US
dc.identifier.citedreferenceAgus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI, Lofgren JA, Tindell C, Evans DP, Maiese K, Scher HI, Sliwkowski MX. Targeting ligand‐activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2002; 2: 127 – 37.en_US
dc.identifier.citedreferenceYarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2: 127 – 37.en_US
dc.identifier.citedreferenceIsola J, Chu L, DeVries S, Matsumura K, Chew K, Ljung BM, Waldman FM. Genetic alterations in ERBB2‐amplified breast carcinomas. Clin Cancer Res 1999; 5: 4140 – 5.en_US
dc.identifier.citedreferenceSlamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, et al. Studies of the HER‐2/neu proto‐oncogene in human breast and ovarian cancer. Science 1989; 244: 707 – 12.en_US
dc.identifier.citedreferenceMendelsohn J. Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin Cancer Res 1997; 3 ( 12 Pt 2 ): 2703 – 7.en_US
dc.identifier.citedreferenceHerbst RS, Kim ES, Harari PM. IMC‐C225, an anti‐epidermal growth factor receptor monoclonal antibody, for treatment of head and neck cancer. Expert Opin Biol Ther 2001; 1: 719 – 32.en_US
dc.identifier.citedreferenceFukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard J‐Y, Nishiwaki Y, Vansteenkiste JF, Kudoh S, Averbuch S, Macleod A, Feyereislova A, et al. Final results from a phase II trial of ZD1839 (‘Iressa’) for patients with advanced non‐small‐cell lung cancer (IDEAL 1). Proc Am Soc Clin Oncol 2002; 21: A1188.en_US
dc.identifier.citedreferenceKris MG, Natale RB, Herbst RS, Lynch TJJ, Prager D, Belani CP, Schiller JH, Kelly K, Spiridonidis C, Albain KS, Brahmer JR, Sandler A, et al. A phase II trial of ZD1839 (‘Iressa’) in advanced non‐small cell lung cancer (NSCLC) patients who had failed platinum‐ and docetaxel‐based regimens (IDEAL 2). Proc Am Soc Clin Oncol 2002; 21: A1166.en_US
dc.identifier.citedreferenceScott GK, Amend C, Benz CC. Histone deacetylase (HDAC)‐dependent ErbB2 transcript stability is regulated by its 3′ unstranslated region (3′ UTR) Proc Am Assoc Cancer Res 2003; 44: 1504.en_US
dc.identifier.citedreferenceGiaccone G, Johnson D, Scagliotti GV, Manegold C, Rosell R, Rennie P, Wolf M, Averbuch S, Grous J, Fandi A. Results of a multivariate analysis of prognostic factors of overall survival of patients with advanced non‐small‐cell lung cancer (NSCLC) treated with gefitinib (ZD1839) in combination with platinum‐based chemotherapy (CT) in two large phase III trials (INTACT 1 and 2) Proc Am Soc Clin Oncol 2003; 22: A2522.en_US
dc.identifier.citedreferenceAlmenara J, Rosato R, Grant S. Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Leukemia 2002; 16: 1331 – 43.en_US
dc.identifier.citedreferenceJohnstone RW. Histone‐deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 2002; 1: 287 – 99.en_US
dc.identifier.citedreferenceMunster PN, Troso‐Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 2001; 61: 8492 – 7.en_US
dc.identifier.citedreferenceKumar‐Sinha C, Varambally S, Sreekumar A, Chinnaiyan AM. Molecular cross‐talk between the TRAIL and interferon signaling pathways. J Biol Chem 2002; 277: 575 – 85.en_US
dc.identifier.citedreferenceKleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, Sabel MS, Livant D, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A 2003; 19: 19.en_US
dc.identifier.citedreferenceMacabeo‐Ong M, Ginzinger DG, Dekker N, McMillan A, Regezi JA, Wong DT, Jordan RC. Effect of duration of fixation on quantitative reverse transcription polymerase chain reaction analyses. Mod Pathol 2002; 15: 979 – 87.en_US
dc.identifier.citedreferenceMitas M, Mikhitarian K, Walters C, Baron PL, Elliott BM, Brothers TE, Robison JG, Metcalf JS, Palesch YY, Zhang Z, Gillanders WE, Cole DJ. Quantitative real‐time RT‐PCR detection of breast cancer micrometastasis using a multigene marker panel. Int J Cancer 2001; 93: 162 – 71.en_US
dc.identifier.citedreferenceVandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real‐time quantitative RT‐PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3:RESEARCH0034.en_US
dc.identifier.citedreferenceEkert PG, Silke J, Vaux DL. Caspase inhibitors. Cell Death Differ 1999; 6: 1081 – 6.en_US
dc.identifier.citedreferenceBerenbaum MC. What is synergy? Pharmacol Rev 1989; 41: 93 – 141.en_US
dc.identifier.citedreferenceDhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM. Delineation of prognostic biomarkers in prostate cancer. Nature 2001; 412: 822 – 6.en_US
dc.identifier.citedreferenceSlichenmyer WJ, Elliott WL, Fry DW. CI‐1033, a pan‐erbB tyrosine kinase inhibitor. Semin Oncol 2001; 28 ( 5 Suppl 16 ): 80 – 5.en_US
dc.identifier.citedreferenceYu X, Guo ZS, Marcu MG, Neckers L, Nguyen DM, Chen GA, Schrump DS. Modulation of p53, ErbB1, ErbB2, and Raf‐1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst 2002; 94: 504 – 13.en_US
dc.identifier.citedreferenceFuino L, Bali P, Wittmann S, Donapaty S, Guo F, Yamaguchi H, Wang HG, Atadja P, Bhalla K. Histone deacetylase inhibitor LAQ824 down‐regulates Her‐2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol Cancer Ther 2003; 2: 971 – 84.en_US
dc.identifier.citedreferenceNimmanapalli R, Fuino L, Bali P, Gasparetto M, Glozak M, Tao J, Moscinski L, Smith C, Wu J, Jove R, Atadja P, Bhalla K. Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr‐Abl and induces apoptosis of imatinib mesylate‐sensitive or ‐refractory chronic myelogenous leukemia‐blast crisis cells. Cancer Res 2003; 63: 5126 – 35.en_US
dc.identifier.citedreferenceNimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K. Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib‐induced apoptosis of Bcr‐Abl‐positive human acute leukemia cells. Blood 2003; 101: 3236 – 9.en_US
dc.identifier.citedreferencePollack VA, Savage DM, Baker DA, Tsaparikos KE, Sloan DE, Moyer JD, Barbacci EG, Pustilnik LR, Smolarek TA, Davis JA, Vaidya MP, Arnold LD, et al. Inhibition of epidermal growth factor receptor‐associated tyrosine phosphorylation in human carcinomas with CP‐358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J Pharmacol Exp Ther 1999; 291: 739 – 48.en_US
dc.identifier.citedreferenceHidalgo M. Erlotinib: preclinical investigations. Oncology (Huntingt) 2003; 17 ( 11 Suppl 12 ): 11 – 6.en_US
dc.identifier.citedreferenceAkita RW, Dugger D, Philips G, Lafleur M, Kang K, Erickson S, Romero M, Schwall R, Sliwkowski MX. Effects of the EGFR inhibitor TARCEVA on activated ErbB2. Proc Am Assoc Cancer Res 2002; 43: 1003.en_US
dc.identifier.citedreferenceLi B, Chang CM, Yuan M, McKenna WG, Shu HK. Resistance to small molecule inhibitors of epidermal growth factor receptor in malignant gliomas. Cancer Res 2003; 63: 7443 – 50.en_US
dc.identifier.citedreferenceHuang SM, Armstrong E, Chinnaiyan P, Harari PM. Dual agent molecular targeting of the epidermal growth factor receptor: combining anti‐HER1/EGFR monoclonal antibody with tyrosine kinase inhibitor. Proc Am Assoc Cancer Res 2003; 44: 3777.en_US
dc.identifier.citedreferenceMatar P, Rojo F, Guzman M, Rodriguez‐Viltro I, Arribas J, Baselga J. Combined anti‐epidermal growth factor receptor (EGFR) treatment with a tyrosine kinase inhibitor gefitinib (ZD1839, ‘Iressa’) and a monoclonal antibody (IMC‐C225): evidence of synergy. Proc Am Assoc Cancer Res 2003; 44: 4007.en_US
dc.identifier.citedreferenceCitri A, Alroy I, Lavi S, Rubin C, Xu W, Grammatikakis N, Patterson C, Neckers L, Fry DW, Yarden Y. Drug‐induced ubiquitylation and degradation of ErbB receptor tyrosine kinases: implications for cancer therapy. EMBO J 2002; 21: 2407 – 17.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.