Show simple item record

REV1 and DNA polymerase zeta in DNA interstrand crosslink repair

dc.contributor.authorSharma, Shilpyen_US
dc.contributor.authorCanman, Christine E.en_US
dc.date.accessioned2012-12-11T17:37:30Z
dc.date.available2014-02-03T16:21:45Zen_US
dc.date.issued2012-12en_US
dc.identifier.citationSharma, Shilpy; Canman, Christine E. (2012). "REV1 and DNA polymerase zeta in DNA interstrand crosslink repair." Environmental and Molecular Mutagenesis 53(9): 725-740. <http://hdl.handle.net/2027.42/94500>en_US
dc.identifier.issn0893-6692en_US
dc.identifier.issn1098-2280en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94500
dc.description.abstractDNA interstrand crosslinks (ICLs) are covalent linkages between two strands of DNA, and their presence interferes with essential metabolic processes such as transcription and replication. These lesions are extremely toxic, and their repair is essential for genome stability and cell survival. In this review, we will discuss how the removal of ICLs requires interplay between multiple genome maintenance pathways and can occur in the absence of replication (replication‐independent ICL repair) or during S phase (replication‐coupled ICL repair), the latter being the predominant pathway used in mammalian cells. It is now well recognized that translesion DNA synthesis (TLS), especially through the activities of REV1 and DNA polymerase zeta (Polζ), is necessary for both ICL repair pathways operating throughout the cell cycle. Recent studies suggest that the convergence of two replication forks upon an ICL initiates a cascade of events including unhooking of the lesion through the actions of structure‐specific endonucleases, thereby creating a DNA double‐stranded break (DSB). TLS across the unhooked lesion is necessary for restoring the sister chromatid before homologous recombination repair. Biochemical and genetic studies implicate REV1 and Polζ as being essential for performing lesion bypass across the unhooked crosslink, and this step appears to be important for subsequent events to repair the intermediate DSB. The potential role of Fanconi anemia pathway in the regulation of REV1 and Polζ‐dependent TLS and the involvement of additional polymerases, including DNA polymerases kappa, nu, and theta, in the repair of ICLs is also discussed in this review. Environ. Mol. Mutagen. 2012. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherRepairen_US
dc.subject.otherFanconi Anemiaen_US
dc.subject.otherTranslesion DNA Synthesisen_US
dc.subject.otherREV1en_US
dc.subject.otherREV3en_US
dc.subject.otherREV7en_US
dc.subject.otherInterstrand Cross Linken_US
dc.titleREV1 and DNA polymerase zeta in DNA interstrand crosslink repairen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pharmacology, University of Michigan Medical School, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Pharmacology, University of Michigan Medical School, Biomedical Science Research Building, 109 Zina Pitcher Place, Room 2069, Ann Arbor, MI 48109‐2200, USAen_US
dc.identifier.pmid23065650en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94500/1/21736_ftp.pdf
dc.identifier.doi10.1002/em.21736en_US
dc.identifier.sourceEnvironmental and Molecular Mutagenesisen_US
dc.identifier.citedreferenceSharma S, Hicks JK, Chute CL, Brennan JR, Ahn J‐Y, Glover TW, Canman CE. 2012a. REV1 and polymerase ζ facilitate homologous recombination repair. Nucleic Acids Res 40: 682 – 691.en_US
dc.identifier.citedreferenceWang J, Kajiwara K, Kawamura K, Kimura M, Miyagishima H, Koseki H, Tagawa M. 2002. An essential role for REV3 in mammalian cell survival: Absence of REV3 induces p53‐independent embryonic death. Biochem Biophys Res Commun 293: 1132 – 1137.en_US
dc.identifier.citedreferenceWang H, Zhang S‐Y, Wang S, Lu J, Wu W, Weng L, Chen D, Zhang Y, Lu Z, Yang J, Chen Y, Zhang X, Chen X, Xi C, Lu D, Zhao S. 2009. REV3L confers chemoresistance to cisplatin in human gliomas: The potential of its RNAi for synergistic therapy. Neuro‐Oncol 11: 790 – 802.en_US
dc.identifier.citedreferenceWang AT, Sengerova B, Cattell E, Inagawa T, Hartley JM, Kiakos K, Burgess‐Brown NA, Swift LP, Enzlin JH, Schofield CJ, Gileadi O, Hartley JA, McHugh PJ. 2011. Human SNM1A and XPF‐ERCC1 collaborate to initiate DNA interstrand cross‐link repair. Genes Dev 25: 1859 – 1870.en_US
dc.identifier.citedreferenceWatanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M. 2004. Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J 23: 3886 – 3896.en_US
dc.identifier.citedreferenceWaters LS, Minesinger BK, Wiltrout ME, D'Souza S, Woodruff RV, Walker GC. 2009. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol R 73: 134 – 154.en_US
dc.identifier.citedreferenceWilliams SA, Longerich S, Sung P, Vaziri C, Kupfer GM. 2011. The E3 ubiquitin ligase RAD18 regulates ubiquitylation and chromatin loading of FANCD2 and FANCI. Blood 117: 5078 – 5087.en_US
dc.identifier.citedreferenceWittschieben J, Shivji MKK, Lalani E, Jacobs MA, Marini F, Gearhart PJ, Rosewell I, Stamp G, Wood RD. 2000. Disruption of the developmentally regulated Rev3l gene causes embryonic lethality. Curr Biol 10: 1217 – 1220.en_US
dc.identifier.citedreferenceWittschieben JP, Reshmi SC, Gollin SM, Wood RD. 2006. Loss of DNA polymerase ζ causes chromosomal instability in mammalian cells. Cancer Res 66: 134 – 142.en_US
dc.identifier.citedreferenceWittschieben JP, Patil V, Glushets V, Robinson LJ, Kusewitt DF, Wood RD. 2010. Loss of DNA polymerase ζ enhances spontaneous tumorigenesis. Cancer Res 70: 2770 – 2778.en_US
dc.identifier.citedreferenceWojtaszek J, Liu J, D'Souza S, Wang S, Xue Y, Walker GC, Zhou P. 2012. Multifaceted recognition of vertebrate Rev1 by translesion polymerases zeta and kappa. J Biol Chem 287: 26400 – 26408.en_US
dc.identifier.citedreferenceWojtaszek J, Lee CJ, D'Souza S, Minesinger B, Kim H, D'Andrea AD, Walker GC, Zhou P. Structural basis of Rev1‐mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric Polζ and Polκ. J Biol Chem (in press).en_US
dc.identifier.citedreferenceWood RD. 2010. Mammalian nucleotide excision repair proteins and interstrand crosslink repair. Environ Mol Mutagen 51: 520 – 526.en_US
dc.identifier.citedreferenceWu F, Lin X, Okuda T, Howell SB. 2004. DNA polymerase zeta regulates cisplatin cytotoxicity, mutagenicity, and the rate of development of cisplatin resistance. Cancer Res 64: 8029 – 8035.en_US
dc.identifier.citedreferenceXia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q, Pals G, Errami A, Gluckman E, Llera J, Wang W, Livingston DM, Joenje H, de Winter JP. 2007. Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39: 159 – 161.en_US
dc.identifier.citedreferenceXiao W, Chow BL, Broomfield S, Hanna M. 2000. The Saccharomyces cerevisiae RAD6 group is composed of an error‐prone and two error‐free postreplication repair pathways. Genetics 155: 1633 – 1641.en_US
dc.identifier.citedreferenceXie K, Doles J, Hemann MT, Walker GC. 2010. Error‐prone translesion synthesis mediates acquired chemoresistance. Proc Natl Acad Sci USA 107: 20792 – 20797.en_US
dc.identifier.citedreferenceYamamoto K, Hirano S, Ishiai M, Morishima K, Kitao H, Namikoshi K, Kimura M, Matsushita N, Arakawa H, Buerstedde JM, Komatsu K, Thompson LH, Takata M. 2005. Fanconi anemia protein FANCD2 promotes immunoglobulin gene conversion and DNA repair through a mechanism related to homologous recombination. Mol Cell Biol 25: 34 – 43.en_US
dc.identifier.citedreferenceYamamoto KN, Kobayashi S, Tsuda M, Kurumizaka H, Takata M, Kono K, Jiricny J, Takeda S, Hirota K. 2011. Involvement of SLX4 in interstrand cross‐link repair is regulated by the Fanconi anemia pathway. Proc Natl Acad Sci USA 108: 6492 – 6496.en_US
dc.identifier.citedreferenceYamanaka K, Minko IG, Takata K, Kolbanovskiy A, Kozekov ID, Wood RD, Rizzo CJ, Lloyd RS. 2010. Novel enzymatic function of DNA polymerase nu in translesion DNA synthesis past major groove DNA‐peptide and DNA‐DNA cross‐links. Chem Res Toxicol 23: 689 – 695.en_US
dc.identifier.citedreferenceYan Z, Guo R, Paramasivam M, Shen W, Ling C, Fox D, 3rd, Wang Y, Oostra AB, Kuehl J, Lee DY, Takata M, Hoatlin ME, Schindler D, Joenje H, de Winter JP, Li L, Seidman MM, Wang W. 2012. A ubiquitin‐binding protein, FAAP20, links RNF8‐mediated ubiquitination to the Fanconi anemia DNA repair network. Mol Cell 47: 61 – 75.en_US
dc.identifier.citedreferenceYang K, Moldovan G‐L, D'Andrea AD. 2010. RAD18‐dependent recruitment of SNM1A to DNA repair complexes by a ubiquitin‐binding zinc finger. J Biol Chem 285: 19085 – 19091.en_US
dc.identifier.citedreferenceYoshimura M, Kohzaki M, Nakamura J, Asagoshi K, Sonoda E, Hou E, Prasad R, Wilson SH, Tano K, Yasui A, Lan L, Seki M, Wood RD, Arakawa H, Buerstedde JM, Hochegger H, Okada T, Hiraoka M, Takeda S. 2006. Vertebrate POLQ and POLβ cooperate in base excision repair of oxidative DNA damage. Mol Cell 24: 115 – 125.en_US
dc.identifier.citedreferenceZander L, Bemark M. 2004. Immortalized mouse cell lines that lack a functional Rev3 gene are hypersensitive to UV irradiation and cisplatin treatment. DNA Repair 3: 743 – 752.en_US
dc.identifier.citedreferenceZhang Y, Wu X, Guo D, Rechkoblit O, Wang Z. 2002. Activities of human DNA polymerase kappa in response to the major benzo[a]pyrene DNA adduct: Error‐free lesion bypass and extension synthesis from opposite the lesion. DNA Repair 1: 559 – 569.en_US
dc.identifier.citedreferenceZhang N, Liu X, Li L, Legerski R. 2007. Double‐strand breaks induce homologous recombinational repair of interstrand cross‐links via cooperation of MSH2, ERCC1‐XPF, REV3, and the Fanconi anemia pathway. DNA Repair 6: 1670 – 1678.en_US
dc.identifier.citedreferenceZhong X, Garg P, Stith CM, Nick McElhinny SA, Kissling GE, Burgers PM, Kunkel TA. 2006. The fidelity of DNA synthesis by yeast DNA polymerase zeta alone and with accessory proteins. Nucleic Acids Res 34: 4731 – 4742.en_US
dc.identifier.citedreferenceZietlow L, Smith LA, Bessho M, Bessho T. 2009. Evidence for the involvement of human DNA polymerase N in the repair of DNA interstrand cross‐links. Biochemistry 48: 11817 – 11824.en_US
dc.identifier.citedreferenceAcharya N, Johnson RE, Prakash S, Prakash L. 2006. Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase ζ for mismatch extension and for extension opposite from DNA lesions. Mol Cell Biol 26: 9555 – 9563.en_US
dc.identifier.citedreferenceAcharya N, Yoon JH, Gali H, Unk I, Haracska L, Johnson RE, Hurwitz J, Prakash L, Prakash S. 2008. Roles of PCNA‐binding and ubiquitin‐binding domains in human DNA polymerase η in translesion DNA synthesis. Proc Natl Acad Sci USA 105: 17724 – 17729.en_US
dc.identifier.citedreferenceAcharya N, Johnson R, Pages V, Prakash L, Prakash S. 2009. Yeast Rev1 protein promotes complex formation of DNA polymerase ζ with Pol32 subunit of DNA polymerase δ. Proc Natl Acad Sci USA 106: 9631 – 9636.en_US
dc.identifier.citedreferenceAkkari YMN, Bateman RL, Reifsteck CA, Olson SB, Grompe M. 2000. DNA replication is required to elicit cellular responses to psoralen‐induced DNA interstrand cross‐links. Mol Cell Biol 20: 8283 – 8289.en_US
dc.identifier.citedreferenceAli AM, Pradhan A, Singh TR, Du C, Li J, Wahengbam K, Grassman E, Auerbach AD, Pang Q, Meetei AR. 2012. FAAP20: A novel ubiquitin‐binding FA nuclear core‐complex protein required for functional integrity of the FA‐BRCA DNA repair pathway. Blood 119: 3285 – 3294.en_US
dc.identifier.citedreferenceAndersen PL, Xu F, Xiao W. 2008. Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res 18: 162 – 173.en_US
dc.identifier.citedreferenceAndersson BS, Sadeghi T, Siciliano MJ, Legerski R, Murray D. 1996. Nucleotide excision repair genes as determinants of cellular sensitivity to cyclophosphamide analogs. Cancer Chemother Pharmacol 38: 406 – 416.en_US
dc.identifier.citedreferenceArana ME, Seki M, Wood RD, Rogozin IB, Kunkel TA. 2008. Low‐fidelity DNA synthesis by human DNA polymerase theta. Nucleic Acids Res 36: 3847 – 3856.en_US
dc.identifier.citedreferenceAuerbach AD. 2009. Fanconi anemia and its diagnosis. Mutat Res 668: 4 – 10.en_US
dc.identifier.citedreferenceAvkin S, Goldsmith M, Velasco‐Miguel S, Geacintov N, Friedberg EC, Livneh Z. 2004. Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene‐guanine adduct in mammalian cells: The role of DNA polymerase kappa. J Biol Chem 279: 53298 – 53305.en_US
dc.identifier.citedreferenceBailly V, Lauder S, Prakash S, Prakash L. 1997. Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J Biol Chem 272: 23360 – 23365.en_US
dc.identifier.citedreferenceBarre FX, Asseline U, Harel‐Bellan A. 1999. Asymmetric recognition of psoralen interstrand crosslinks by the nucleotide excision repair and the error‐prone repair pathways. J Mol Biol 286: 1379 – 1387.en_US
dc.identifier.citedreferenceBemark M, Khamlichi AA, Davies SL, Neuberger MS. 2000. Disruption of mouse polymerase ζ (Rev3) leads to embryonic lethality and impairs blastocyst development in vitro. Curr Biol 10: 1213 – 1216.en_US
dc.identifier.citedreferenceBerardini M, Foster PL, Loechler EL. 1999. DNA polymerase II (PolB) is involved in a new DNA repair pathway for DNA interstrand cross‐links in Escherichia coli. J Bacteriol 181: 2878 – 2882.en_US
dc.identifier.citedreferenceBienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wider G, Peter M, Lehmann AR, Hofmann K, Dikic I. 2005. Ubiquitin‐binding domains in Y‐family polymerases regulate translesion synthesis. Science 310: 1821 – 1824.en_US
dc.identifier.citedreferenceBomar MG, D'Souza S, Bienko M, Dikic I, Walker GC, Zhou P. 2010. Unconventional ubiquitin recognition by the ubiquitin‐binding motif within the Y family DNA polymerases iota and Rev1. Mol Cell 37: 408 – 417.en_US
dc.identifier.citedreferenceBoyd JB, Golino MD, Shaw KE, Osgood CJ, Green MM. 1981. Third‐chromosome mutagen‐sensitive mutants of Drosophila melanogaster. Genetics 97: 607 – 623.en_US
dc.identifier.citedreferenceBoyd JB, Sakaguchi K, Harris PV. 1990. mus308 mutants of Drosophila exhibit hypersensitivity to DNA cross‐linking agents and are defective in a deoxyribonuclease. Genetics 125: 813 – 819.en_US
dc.identifier.citedreferenceBroomfield S, Chow BL, Xiao W. 1998. MMS2, encoding a ubiquitin‐conjugating‐enzyme‐like protein, is a member of the yeast error‐free postreplication repair pathway. Proc Natl Acad Sci USA 95: 5678 – 5683.en_US
dc.identifier.citedreferenceBrown S, Niimi A, Lehmann AR. 2009. Ubiquitination and deubiquitination of PCNA in response to stalling of the replication fork. Cell Cycle 8: 689 – 692.en_US
dc.identifier.citedreferenceCantor SB, Xie J. 2010. Assessing the link between BACH1/FANCJ and MLH1 in DNA crosslink repair. Environ Mol Mutagen 51: 500 – 507.en_US
dc.identifier.citedreferenceCassier C, Moustacchi E. 1981. Mutagenesis induced by mono‐ and bi‐functional alkylating agents in yeast mutants sensitive to photo‐addition of furocoumarins (pso). Mutat Res 84: 37 – 47.en_US
dc.identifier.citedreferenceChang DJ, Cimprich KA. 2009. DNA damage tolerance: When it's OK to make mistakes. Nat Chem Biol 5: 82 – 90.en_US
dc.identifier.citedreferenceCheng S, Vanhouten B, Gamper HB, Sancar A, Hearst JE. 1988. Use of psoralen‐modified oligonucleotides to trap three‐stranded RecA‐DNA complexes and repair of these cross‐linked complexes by ABC exonuclease. J Biol Chem 263: 15110 – 15117.en_US
dc.identifier.citedreferenceCheng S, Sancar A, Hearst JE. 1991. RecA‐dependent incision of psoralen‐crosslinked DNA by (A)BC exonuclease. Nucleic Acids Res 19: 657 – 663.en_US
dc.identifier.citedreferenceCheung HW, Chun ACS, Wang Q, Deng W, Hu L, Guan XY, Nicholls JM, Ling MT, Chuan Wong Y, Wah Tsao S, Jin DY, Wang X. 2006. Inactivation of human MAD2B in nasopharyngeal carcinoma cells leads to chemosensitization to DNA‐damaging agents. Cancer Res 66: 4357 – 4367.en_US
dc.identifier.citedreferenceChoi JY, Angel KC, Guengerich FP. 2006. Translesion synthesis across bulky N 2 ‐alkyl guanine DNA adducts by human DNA polymerase kappa. J Biol Chem 281: 21062 – 21072.en_US
dc.identifier.citedreferenceClingen PH, De Silva IU, McHugh PJ, Ghadessy FJ, Tilby MJ, Thurston DE, Hartley JA. 2005. The XPF‐ERCC1 endonuclease and homologous recombination contribute to the repair of minor groove DNA interstrand crosslinks in mammalian cells produced by the pyrrolo[2,1‐c][1,4]benzodiazepine dimer SJG‐136. Nucleic Acids Res 33: 3283 – 3291.en_US
dc.identifier.citedreferenceCole RS. 1973. Repair of DNA containing interstrand crosslinks in Escherichia coli: Sequential excision and recombination. Proc Natl Acad Sci USA 70: 1064 – 1068.en_US
dc.identifier.citedreferenceCole RS, Levitan D, Sinden RR. 1976. Removal of psoralen interstrand cross‐links from DNA of Escherichia coli: Mechanism and genetic control. J Mol Biol 103: 39 – 59.en_US
dc.identifier.citedreferenceConstantinou A. 2012. Rescue of replication failure by Fanconi anaemia proteins. Chromosoma 121: 21 – 36.en_US
dc.identifier.citedreferenceCrossan GP, van der Weyden L, Rosado IV, Langevin F, Gaillard PH, McIntyre RE, Gallagher F, Kettunen MI, Lewis DY, Brindle K, Arends MJ, Adams DJ, Patel KJ. 2011. Disruption of mouse Slx4, a regulator of structure‐specific nucleases, phenocopies Fanconi anemia. Nat Genet 43: 147 – 152.en_US
dc.identifier.citedreferenceCybulski KE, Howlett NG. 2011. FANCP/SLX4: A Swiss army knife of DNA interstrand crosslink repair. Cell Cycle 10: 1757 – 1763.en_US
dc.identifier.citedreferenceD'Souza S, Walker GC. 2006. Novel role for the C terminus of Saccharomyces cerevisiae Rev1 in mediating protein‐protein interactions. Mol Cell Biol 26: 8173 – 8182.en_US
dc.identifier.citedreferenceDavies AA, Huttner D, Daigaku Y, Chen S, Ulrich HD. 2008. Activation of ubiquitin‐dependent DNA damage bypass is mediated by replication protein A. Mol Cell 29: 625 – 636.en_US
dc.identifier.citedreferencede Laat WL, Jaspers NGJ, Hoeijmakers JHJ. 1999. Molecular mechanism of nucleotide excision repair. Genes Dev 13: 768 – 785.en_US
dc.identifier.citedreferenceDe Silva IU, McHugh PJ, Clingen PH, Hartley JA. 2000. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross‐links in mammalian cells. Mol Cell Biol 20: 7980 – 7990.en_US
dc.identifier.citedreferenceDeans AJ, West SC. 2011. DNA interstrand crosslink repair and cancer. Nat Rev Cancer 11: 467 – 480.en_US
dc.identifier.citedreferenceDiamant N, Hendel A, Vered I, Carell T, Reißner T, de Wind N, Geacinov N, Livneh Z. 2012. DNA damage bypass operates in the S and G2 phases of the cell cycle and exhibits differential mutagenicity. Nucleic Acids Res 40: 170 – 180.en_US
dc.identifier.citedreferenceDoles J. 2010. Suppression of Rev3, the catalytic subunit of Polζ, sensitizes drug‐resistant lung tumors to chemotherapy. Proc Natl Acad Sci USA 107: 20786 – 20791.en_US
dc.identifier.citedreferenceDorsman JC, Levitus M, Rockx D, Rooimans MA, Oostra AB, Haitjema A, Bakker ST, Steltenpool J, Schuler D, Mohan S, Schindler D, Arwert F, Pals G, Mathew CG, Waisfisz Q, de Winter JP, Joenje H. 2007. Identification of the Fanconi anemia complementation group I gene, FANCI. Cell Oncol 29: 211 – 218.en_US
dc.identifier.citedreferenceEdmunds CE, Simpson LJ, Sale JE. 2008. PCNA Ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol Cell 30: 519 – 529.en_US
dc.identifier.citedreferenceEnoiu M, Jiricny J, Schärer OD. Repair of cisplatin‐induced DNA interstrand crosslinks by a replication‐independent pathway involving transcription‐coupled repair and translesion synthesis. Nucleic Acids Res (in press).en_US
dc.identifier.citedreferenceFekairi S, Scaglione S, Chahwan C, Taylor ER, Tissier A, Coulon S, Dong M‐Q, Ruse C, Yates Iii JR, Russell P, Fuchs RP, McGowan CH, Gaillard P‐HL. 2009. Human SLX4 is a holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell 138: 78 – 89.en_US
dc.identifier.citedreferenceFriedberg EC, Lehmann AR, Fuchs RP. 2005. Trading places: How do DNA polymerases switch during translesion DNA synthesis? Mol Cell 18: 499 – 505.en_US
dc.identifier.citedreferenceFujii S, Fuchs RP. 2004. Defining the position of the switches between replicative and bypass DNA polymerases. EMBO J 23: 4342 – 4352.en_US
dc.identifier.citedreferenceGarcia‐Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, Grompe M, D'Andrea AD. 2001. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 7: 249 – 262.en_US
dc.identifier.citedreferenceGeng LY, Huntoon CJ, Karnitz LM. 2010. RAD18‐mediated ubiquitination of PCNA activates the Fanconi anemia DNA repair network. J Cell Biol 191: 249 – 257.en_US
dc.identifier.citedreferenceGerlach VL, Feaver WJ, Fischhaber PL, Friedberg EC. 2001. Purification and characterization of Polκ, a DNA polymerase encoded by the human DINB1 gene. J Biol Chem 276: 92 – 98.en_US
dc.identifier.citedreferenceGibbs PEM, McDonald J, Woodgate R, Lawrence CW. 2005. The relative roles in vivo of Saccharomyces cerevisiae Polη, Polζ, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T‐T (6–4) photoadduct and T‐T cis‐syn cyclobutane dimer. Genetics 169: 575 – 582.en_US
dc.identifier.citedreferenceGoff JP, Shields DS, Seki M, Choi S, Epperly MW, Dixon T, Wang H, Bakkenist CJ, Dertinger SD, Torous DK, Wittschieben J, Wood RD, Greenberger JS. 2009. Lack of DNA polymerase theta (POLQ) radiosensitizes bone marrow stromal cells in vitro and increases reticulocyte micronuclei after total‐body irradiation. Radiat Res 172: 165 – 174.en_US
dc.identifier.citedreferenceGoodman MF. 2002. Error‐prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem 71: 17 – 50.en_US
dc.identifier.citedreferenceGuo C, Fischhaber PL, Luk‐Paszyc MJ, Masuda Y, Zhou J, Kamiya K, Kisker C, Friedberg EC. 2003. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J 22: 6621 – 6630.en_US
dc.identifier.citedreferenceGuo C, Tang TS, Bienko M, Parker JL, Bielen AB, Sonoda E, Takeda S, Ulrich HD, Dikic I, Friedberg EC. 2006. Ubiquitin‐binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol Cell Biol 26: 8892 – 8900.en_US
dc.identifier.citedreferenceGurtan AM, D'Andrea AD. 2006. Dedicated to the core: Understanding the Fanconi anemia complex. DNA Repair 5: 1119 – 1125.en_US
dc.identifier.citedreferenceHanada K, Budzowska M, Modesti M, Maas A, Wyman C, Essers J, Kanaar R. 2006. The structure‐specific endonuclease Mus81‐Eme1 promotes conversion of interstrand DNA crosslinks into double‐strand breaks. EMBO J 25: 4921 – 4932.en_US
dc.identifier.citedreferenceHannah LW, Max EG, Gautier J. 2012. Replication‐independent repair of DNA interstrand crosslinks. Mol Cell 47: 140 – 147.en_US
dc.identifier.citedreferenceHara K, Hashimoto H, Murakumo Y, Kobayashi S, Kogame T, Unzai S, Akashi S, Takeda S, Shimizu T, Sato M. 2010. Crystal structure of human REV7 in complex with a human REV3 fragment and structural implication of the interaction between DNA polymerase ζ and REV1. J Biol Chem 285: 12299 – 12307.en_US
dc.identifier.citedreferenceHaracska L, Unk I, Johnson RE, Johansson E, Burgers PMJ, Prakash S, Prakash L. 2001. Roles of yeast DNA polymerases δ and ζ and of Rev1 in the bypass of abasic sites. Genes Dev 15: 945 – 954.en_US
dc.identifier.citedreferenceHarris PV, Mazina OM, Leonhardt EA, Case RB, Boyd JB, Burtis KC. 1996. Molecular cloning of Drosophila mus308, a gene involved in DNA cross‐link repair with homology to prokaryotic DNA polymerase I genes. Mol Cell Biol 16: 5764 – 5771.en_US
dc.identifier.citedreferenceHendel A, Krijger PH, Diamant N, Goren Z, Langerak P, Kim J, Reissner T, Lee KY, Geacintov NE, Carell T, Myung K, Tateishi S, D'Andrea A, Jacobs H, Livneh Z. 2011. PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells. PLoS Genet 7: e1002262.en_US
dc.identifier.citedreferenceHenriques JAP, Moustacchi E. 1980. Isolation and characterization of pso mutants sensitive to photo‐addition of psoralen derivatives in Saccharomyces cerevisiae. Genetics 95: 273 – 288.en_US
dc.identifier.citedreferenceHenriques JAP, Moustacchi E. 1981. Interactions between mutations for sensitivity to psoralen photoaddition (pso) and to radiation (rad) in Saccharomyces cerevisiae. J Bacteriol 148: 248 – 256.en_US
dc.identifier.citedreferenceHicks JK, Chute CL, Paulsen MT, Ragland RL, Howlett NG, Gueranger Q, Glover TW, Canman CE. 2010. Differential roles for DNA polymerases eta, zeta, and REV1 in lesion bypass of intrastrand versus interstrand DNA cross‐links. Mol Cell Biol 30: 1217 – 1230.en_US
dc.identifier.citedreferenceHinz JM. 2010. Role of homologous recombination in DNA interstrand crosslink repair. Environ Mol Mutagen 51: 582 – 603.en_US
dc.identifier.citedreferenceHlavin EM, Smeaton MB, Miller PS. 2010. Initiation of DNA interstrand cross‐link repair in mammalian cells. Environ Mol Mutagen 51: 604 – 624.en_US
dc.identifier.citedreferenceHo TV, Scharer OD. 2010. Translesion DNA synthesis polymerases in DNA interstrand crosslink repair. Environ Mol Mutagen 51: 552 – 566.en_US
dc.identifier.citedreferenceHo TV, Guainazzi A, Derkunt SB, Enoiu M, Schärer OD. 2011. Structure‐dependent bypass of DNA interstrand crosslinks by translesion synthesis polymerases. Nucleic Acids Res 39: 7455 – 7464.en_US
dc.identifier.citedreferenceHoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. 2002. RAD6‐dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135 – 141.en_US
dc.identifier.citedreferenceHofmann RM, Pickart CM. 1999. Noncanonical MMS2‐encoded ubiquitin‐conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96: 645 – 653.en_US
dc.identifier.citedreferenceHogg M, Seki M, Wood RD, Doublie S, Wallace SS. 2011. Lesion bypass activity of DNA polymerase theta (POLQ) is an intrinsic property of the pol domain and depends on unique sequence inserts. J Mol Biol 405: 642 – 652.en_US
dc.identifier.citedreferenceHogg M, Sauer‐Eriksson AE, Johansson E. 2012. Promiscuous DNA synthesis by human DNA polymerase theta. Nucleic Acids Res 40: 2611 – 2622.en_US
dc.identifier.citedreferenceHowlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De Die‐Smulders C, Persky N, Grompe M, Joenje H, Pals G, Ikeda H, Fox EA, D'Andrea AD. 2002. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297: 606 – 609.en_US
dc.identifier.citedreferenceHowlett NG, Harney JA, Rego MA, Kolling FWt, Glover TW. 2009. Functional interaction between the Fanconi Anemia D2 protein and proliferating cell nuclear antigen (PCNA) via a conserved putative PCNA interaction motif. J Biol Chem 284: 28935 – 28942.en_US
dc.identifier.citedreferenceHoy CA, Thompson LH, Mooney CL, Salazar EP. 1985. Defective DNA cross‐link removal in chinese hamster cell mutants hypersensitive to bifunctional alkylating agents. Cancer Res 45: 1737 – 1743.en_US
dc.identifier.citedreferenceHuang M‐E, de Calignon A, Nicolas A, Galibert F. 2000. POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase δ, defines a link between DNA replication and the mutagenic bypass repair pathway. Curr Genet 38: 178 – 187.en_US
dc.identifier.citedreferenceHuang M, Kim JM, Shiotani B, Yang K, Zou L, D'Andrea AD. 2010. The FANCM/FAAP24 complex is required for the DNA interstrand crosslink‐induced checkpoint response. Mol Cell 39: 259 – 268.en_US
dc.identifier.citedreferenceJachymczyk WJ, Borstel RC, Mowat MRA, Hastings PJ. 1981. Repair of interstrand cross‐links in DNA of Saccharomyces cerevisiae requires two systems for DNA repair: The RAD3 system and the RAD51 system. Mol Gen Genet 182: 196 – 205.en_US
dc.identifier.citedreferenceJansen JG, Tsaalbi‐Shtylik A, Hendriks G, Gali H, Hendel A, Johansson F, Erixon K, Livneh Z, Mullenders LHF, Haracska L, de Wind N. 2009a. Separate domains of rev1 mediate two modes of DNA damage bypass in mammalian cells. Mol Cell Biol 29: 3113 – 3123.en_US
dc.identifier.citedreferenceJansen JG, Tsaalbi‐Shtylik A, Hendriks G, Verspuy J, Gali H, Haracska L, de Wind N. 2009b. Mammalian polymerase ζ is essential for post‐replication repair of UV‐induced DNA lesions. DNA Repair 8: 1444 – 1451.en_US
dc.identifier.citedreferenceJarosz DF, Godoy VG, Delaney JC, Essigmann JM, Walker GC. 2006. A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates. Nature 439: 225 – 228.en_US
dc.identifier.citedreferenceJentsch S, McGrath JP, Varshavsky A. 1987. The yeast DNA repair gene RAD6 encodes a ubiquitin‐conjugating enzyme. Nature 329: 131 – 134.en_US
dc.identifier.citedreferenceJohnson RE, Prakash S, Prakash L. 2000a. The human DINB1 gene encodes the DNA polymerase Polθ. Proc Natl Acad Sci USA 97: 3838 – 3843.en_US
dc.identifier.citedreferenceJohnson RE, Washington MT, Haracska L, Prakash S, Prakash L. 2000b. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature 406: 1015 – 1019.en_US
dc.identifier.citedreferenceJohnson RE, Yu SL, Prakash S, Prakash L. 2003. Yeast DNA polymerase zeta (ζ) is essential for error‐free replication past thymine glycol. Genes Dev 17: 77 – 87.en_US
dc.identifier.citedreferenceKane DP, Shusterman M, Rong Y, McVey M. 2012. Competition between replicative and translesion polymerases during homologous recombination repair in Drosophila. PLoS Genet 8: e1002659.en_US
dc.identifier.citedreferenceKannouche PL, Wing J, Lehmann AR. 2004. Interaction of human DNA polymerase η with monoubiquitinated PCNA: A possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14: 491 – 500.en_US
dc.identifier.citedreferenceKee Y, D'Andrea AD. 2010. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev 24: 1680 – 1694.en_US
dc.identifier.citedreferenceKikuchi S, Hara K, Shimizu T, Sato M, Hashimoto H. 2012. Crystallization and X‐ray diffraction analysis of the ternary complex of the C‐terminal domain of human REV1 in complex with REV7 bound to a REV3 fragment involved in translesion DNA synthesis. Acta Crystallogr Sect F: Struct Biol Cryst Commun 68: 962 – 964.en_US
dc.identifier.citedreferenceKikuchi S, Hara K, Shimizu T, Sato M, Hashimoto H. Structural basis of recruitment of DNA polymerase zeta by interaction between REV1 and REV7. J Biol Chem (in press).en_US
dc.identifier.citedreferenceKim H, Yang K, Dejsuphong D, D'Andrea AD. 2012. Regulation of Rev1 by the Fanconi anemia core complex. Nat Struct Mol Biol 19: 164 – 170.en_US
dc.identifier.citedreferenceKim Y, Lach FP, Desetty R, Hanenberg H, Auerbach AD, Smogorzewska A. 2011. Mutations of the SLX4 gene in Fanconi anemia. Nat Genet 43: 142 – 146.en_US
dc.identifier.citedreferenceKlug AR, Harbut MB, Lloyd RS, Minko IG. 2012. Replication bypass of N 2 ‐deoxyguanosine interstrand cross‐links by human DNA polymerases eta and iota. Chem Res Toxicol 25: 755 – 762.en_US
dc.identifier.citedreferenceKnipscheer P, Räschle M, Smogorzewska A, Enoiu M, Ho TV, Schärer OD, Elledge SJ, Walter JC. 2009. The Fanconi anemia pathway promotes replication‐dependent DNA interstrand cross‐link repair. Science 326: 1698 – 1701.en_US
dc.identifier.citedreferenceKnobel P, Kotov I, Felley‐Bosco E, Stahel R, Marti T. 2011. Inhibition of REV3 expression induces persistent DNA damage and growth arrest in cancer cells. Neoplasia 13: 961 – 970.en_US
dc.identifier.citedreferenceKohzaki M, Nishihara K, Hirota K, Sonoda E, Yoshimura M, Ekino S, Butler JE, Watanabe M, Halazonetis TD, Takeda S. 2010. DNA polymerases nu and theta are required for efficient immunoglobulin V gene diversification in chicken. J Cell Biol 189: 1117 – 1127.en_US
dc.identifier.citedreferenceKratz K, Schopf B, Kaden S, Sendoel A, Eberhard R, Lademann C, Cannavo E, Sartori AA, Hengartner MO, Jiricny J. 2010. Deficiency of FANCD2‐associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 142: 77 – 88.en_US
dc.identifier.citedreferenceLange SS, Wittschieben JP, Wood RD. 2012. DNA polymerase zeta is required for proliferation of normal mammalian cells. Nucleic Acids Res 40: 4473 – 4482.en_US
dc.identifier.citedreferenceLawrence C, Das G, Christensen R. 1985. REV7, a new gene concerned with UV mutagenesis in yeast. Mol Gen Genet 200: 80 – 85.en_US
dc.identifier.citedreferenceLawrence CW. 2002. Cellular roles of DNA polymerase ζ and Rev1 protein. DNA Repair 1: 425 – 435.en_US
dc.identifier.citedreferenceLawrence CW. 2004. Cellular functions of DNA polymerase zeta and Rev1 protein. Adv Protein Chem 69: 167 – 203.en_US
dc.identifier.citedreferenceLemontt JF. 1971. Mutants of yeast defective in mutation induced by ultraviolet light. Genetics 68: 21 – 33.en_US
dc.identifier.citedreferenceLeung JW, Wang Y, Fong KW, Huen MS, Li L, Chen J. 2012. Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross‐link repair. Proc Natl Acad Sci USA 109: 4491 – 4496.en_US
dc.identifier.citedreferenceLin X, Okuda T, Trang J, Howell SB. 2006. Human REV1 modulates the cytotoxicity and mutagenicity of cisplatin in human ovarian carcinoma cells. Mol Pharmacol 69: 1748 – 1754.en_US
dc.identifier.citedreferenceLitman R, Peng M, Jin Z, Zhang F, Zhang J, Powell S, Andreassen PR, Cantor SB. 2005. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell 8: 255 – 265.en_US
dc.identifier.citedreferenceLiu T, Ghosal G, Yuan J, Chen J, Huang J. 2010. FAN1 Acts with FANCI‐FANCD2 to promote DNA interstrand cross‐link repair. Science 329: 693 – 696.en_US
dc.identifier.citedreferenceLopes M, Foiani M, Sogo JM. 2006. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21: 15 – 27.en_US
dc.identifier.citedreferenceMacKay C, Déclais A‐C, Lundin C, Agostinho A, Deans AJ, MacArtney TJ, Hofmann K, Gartner A, West SC, Helleday T, Lilley DMJ, Rouse J. 2010. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142: 65 – 76.en_US
dc.identifier.citedreferenceMarini F, Wood RD. 2002. A human DNA helicase homologous to the DNA cross‐link sensitivity protein Mus308. J Biol Chem 277: 8716 – 8723.en_US
dc.identifier.citedreferenceMarini F, Kim N, Schuffert A, Wood RD. 2003. POLN, a nuclear PolA family DNA polymerase homologous to the DNA cross‐link sensitivity protein Mus308. J Biol Chem 278: 32014 – 32019.en_US
dc.identifier.citedreferenceMartomo SA, Saribasak H, Yokoi M, Hanaoka F, Gearhart PJ. 2008. Reevaluation of the role of DNA polymerase theta in somatic hypermutation of immunoglobulin genes. DNA Repair 7: 1603 – 1608.en_US
dc.identifier.citedreferenceMasuda Y, Ohmae M, Masuda K, Kamiya K. 2003. Structure and enzymatic properties of a stable complex of the human REV1 and REV7 proteins. J Biol Chem 278: 12356 – 12360.en_US
dc.identifier.citedreferenceMasuda K, Ouchida R, Takeuchi A, Saito T, Koseki H, Kawamura K, Tagawa M, Tokuhisa T, Azuma T, J OW. 2005. DNA polymerase theta contributes to the generation of C/G mutations during somatic hypermutation of Ig genes. Proc Natl Acad Sci USA 102: 13986 – 13991.en_US
dc.identifier.citedreferenceMasuda K, Ouchida R, Hikida M, Kurosaki T, Yokoi M, Masutani C, Seki M, Wood RD, Hanaoka F, J OW. 2007. DNA polymerases eta and theta function in the same genetic pathway to generate mutations at A/T during somatic hypermutation of Ig genes. J Biol Chem 282: 17387 – 17394.en_US
dc.identifier.citedreferenceMcHugh PJ, Sones WR, Hartley JA. 2000. Repair of intermediate structures produced at DNA interstrand cross‐links in Saccharomyces cerevisiae. Mol Cell Biol 20: 3425 – 3433.en_US
dc.identifier.citedreferenceMcHugh PJ, Spanswick VJ, Hartley JA. 2001. Repair of DNA interstrand crosslinks: Molecular mechanisms and clinical relevance. Lancet Oncol 2: 483 – 490.en_US
dc.identifier.citedreferenceMcVey M. 2010. Strategies for DNA interstrand crosslink repair: Insights from worms, flies, frogs, and slime molds. Environ Mol Mutagen 51: 646 – 658.en_US
dc.identifier.citedreferenceMinko IG, Harbut MB, Kozekov ID, Kozekova A, Jakobs PM, Olson SB, Moses RE, Harris TM, Rizzo CJ, Lloyd RS. 2008. Role for DNA polymerase kappa in the processing of N 2 ‐N 2 ‐guanine interstrand cross‐links. J Biol Chem 283: 17075 – 17082.en_US
dc.identifier.citedreferenceMirchandani KD, McCaffrey RM, D'Andrea AD. 2008. The Fanconi anemia core complex is required for efficient point mutagenesis and Rev1 foci assembly. DNA Repair 7: 902 – 911.en_US
dc.identifier.citedreferenceMoldovan G‐L, D'Andrea AD. 2009. How the Fanconi anemia pathway guards the genome. Annu Rev Genet 43: 223 – 249.en_US
dc.identifier.citedreferenceMoldovan GL, Madhavan MV, Mirchandani KD, McCaffrey RM, Vinciguerra P, D'Andrea AD. 2010. DNA polymerase POLN participates in cross‐link repair and homologous recombination. Mol Cell Biol 30: 1088 – 1096.en_US
dc.identifier.citedreferenceMorrison A, Christensen RB, Alley J, Beck AK, Bernstine EG, Lemontt JF, Lawrence CW. 1989. REV3, a Saccharomyces cerevisiae gene whose function is required for induced mutagenesis, is predicted to encode a nonessential DNA polymerase. J Bacteriol 171: 5659 – 5667.en_US
dc.identifier.citedreferenceMuniandy PA, Thapa D, Thazhathveetil AK, Liu S‐t, Seidman MM. 2009. Repair of laser‐localized DNA interstrand cross‐links in G1 phase mammalian cells. J Biol Chem 284: 27908 – 27917.en_US
dc.identifier.citedreferenceMuniandy PA, Liu J, Majumdar A, Liu ST, Seidman MM. 2010. DNA interstrand crosslink repair in mammalian cells: Step by step. Crit Rev Biochem Mol Biol 45: 23 – 49.en_US
dc.identifier.citedreferenceMuñoz IM, Hain K, Déclais A‐C, Gardiner M, Toh GW, Sanchez‐Pulido L, Heuckmann JM, Toth R, Macartney T, Eppink B, Kanaar R, Ponting CP, Lilley DMJ, Rouse J. 2009. Coordination of structure‐specific nucleases by human SLX4/BTBD12 is required for DNA repair. Mol Cell 35: 116 – 127.en_US
dc.identifier.citedreferenceMurakumo Y, Roth T, Ishii H, Rasio D, Numata Si, Croce CM, Fishel R. 2000. A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2. J Biol Chem 275: 4391 – 4397.en_US
dc.identifier.citedreferenceMurakumo Y, Ogura Y, Ishii H, Numata S, Ichihara M, Croce CM, Fishel R, Takahashi M. 2001. Interactions in the error‐prone postreplication repair proteins hREV1, hREV3, and hREV7. J Biol Chem 276: 35644 – 35651.en_US
dc.identifier.citedreferenceMuzzini DM, Plevani P, Boulton SJ, Cassata G, Marini F. 2008. Caenorhabditis elegans POLQ‐1 and HEL‐308 function in two distinct DNA interstrand cross‐link repair pathways. DNA Repair 7: 941 – 950.en_US
dc.identifier.citedreferenceNair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK. 2005. Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science 309: 2219 – 2222.en_US
dc.identifier.citedreferenceNakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, D'Andrea AD, Wang ZQ, Jasin M. 2005. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci USA 102: 1110 – 1115.en_US
dc.identifier.citedreferenceNelson JR, Lawrence CW, Hinkle DC. 1996a. Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382: 729 – 731.en_US
dc.identifier.citedreferenceNelson JR, Lawrence CW, Hinkle DC. 1996b. Thymine‐thymine dimer bypass by yeast DNA polymerase ζ. Science 272: 1646 – 1649.en_US
dc.identifier.citedreferenceNelson JR, Gibbs PE, Nowicka AM, Hinkle DC, Lawrence CW. 2000. Evidence for a second function for Saccharomyces cerevisiae Rev1. Mol Microbiol 37: 549 – 554.en_US
dc.identifier.citedreferenceNiedernhofer LJ. 2007. The Fanconi anemia signalosome anchor. Mol Cell 25: 487 – 490.en_US
dc.identifier.citedreferenceNiedernhofer LJ, Odijk H, Budzowska M, van Drunen E, Maas A, Theil AF, de Wit J, Jaspers NGJ, Beverloo HB, Hoeijmakers JHJ, Kanaar R. 2004. The structure‐specific endonuclease Ercc1‐Xpf is required to resolve DNA interstrand cross‐link‐induced double‐strand breaks. Mol Cell Biol 24: 5776 – 5787.en_US
dc.identifier.citedreferenceNiedzwiedz W, Mosedale G, Johnson M, Ong CY, Pace P, Patel KJ. 2004. The Fanconi anaemia gene FANCC promotes homologous recombination and error‐prone DNA repair. Mol Cell 15: 607 – 620.en_US
dc.identifier.citedreferenceNiimi A, Brown S, Sabbioneda S, Kannouche PL, Scott A, Yasui A, Green CM, Lehmann AR. 2008. Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc Natl Acad Sci USA 105: 16125 – 16130.en_US
dc.identifier.citedreferenceNojima K, Hochegger H, Saberi A, Fukushima T, Kikuchi K, Yoshimura M, Orelli BJ, Bishop DK, Hirano S, Ohzeki M, Ishiai M, Yamamoto K, Takata M, Arakawa H, Buerstedde JM, Yamazoe M, Kawamoto T, Araki K, Takahashi JA, Hashimoto N, Takeda S, Sonoda E. 2005. Multiple repair pathways mediate tolerance to chemotherapeutic cross‐linking agents in vertebrate cells. Cancer Res 65: 11704 – 11711.en_US
dc.identifier.citedreferenceOgi T, Kato T Jr, Kato T, Ohmori H. 1999. Mutation enhancement by DINB1, a mammalian homologue of the Escherichia coli mutagenesis protein dinB. Genes Cells 4: 607 – 618.en_US
dc.identifier.citedreferenceOgi T, Shinkai Y, Tanaka K, Ohmori H. 2002. Polkappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene. Proc Natl Acad Sci USA 99: 15548 – 15553.en_US
dc.identifier.citedreferenceOhashi E, Murakumo Y, Kanjo N, Akagi J, Masutani C, Hanaoka F, Ohmori H. 2004. Interaction of hREV1 with three human Y‐family DNA polymerases. Genes Cells 9: 523 – 531.en_US
dc.identifier.citedreferenceOhmori H, Friedberg EC, Fuchs RP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW, Livneh Z, Nohmi T, Prakash L, Prakash S, Todo T, Walker GC, Wang Z, Woodgate R. 2001. The Y‐family of DNA polymerases. Mol Cell 8: 7 – 8.en_US
dc.identifier.citedreferenceOkada T, Sonoda E, Yoshimura M, Kawano Y, Saya H, Kohzaki M, Takeda S. 2005. Multiple roles of vertebrate REV genes in DNA repair and recombination. Mol Cell Biol 25: 6103 – 6111.en_US
dc.identifier.citedreferenceOshige M, Aoyagi N, Harris PV, Burtis KC, Sakaguchi K. 1999. A new DNA polymerase species from Drosophila melanogaster: A probable mus308 gene product. Mutat Res 433: 183 – 192.en_US
dc.identifier.citedreferencePace P, Mosedale G, Hodskinson MR, Rosado IV, Sivasubramaniam M, Patel KJ. 2010. Ku70 Corrupts DNA repair in the absence of the Fanconi anemia pathway. Science 329: 219 – 223.en_US
dc.identifier.citedreferencePalle K, Vaziri C. 2011. Rad18 E3 ubiquitin ligase activity mediates fanconi anemia pathway activation and cell survival following DNA topoisomerase 1 inhibition. Cell Cycle 10: 1625 – 1638.en_US
dc.identifier.citedreferencePang M, McConnell M, Fisher PA. 2005. The Drosophila mus 308 gene product, implicated in tolerance of DNA interstrand crosslinks, is a nuclear protein found in both ovaries and embryos. DNA Repair 4: 971 – 982.en_US
dc.identifier.citedreferencePlosky BS, Vidal AE, Fernandez de Henestrosa AR, McLenigan MP, McDonald JP, Mead S, Woodgate R. 2006. Controlling the subcellular localization of DNA polymerases iota and eta via interactions with ubiquitin. EMBO J 25: 2847 – 2855.en_US
dc.identifier.citedreferencePozhidaeva A, Pustovalova Y, D'Souza S, Bezsonova I, Walker GC, Korzhnev DM. 2012. NMR structure and dynamics of the C‐terminal domain from human Rev1 and its complex with Rev1 interacting region of DNA polymerase η. Biochemistry 51: 5506 – 5520en_US
dc.identifier.citedreferencePrakash S, Prakash L. 2002. Translesion DNA synthesis in eukaryotes: A one‐ or two‐polymerase affair. Genes Dev 16: 1872 – 1883.en_US
dc.identifier.citedreferencePrakash S, Johnson RE, Prakash L. 2005. Eukaryotic translesion synthesis DNA polymerases: Specificity of structure and function. Annu Rev Biochem 74: 317 – 353.en_US
dc.identifier.citedreferenceRaschle M, Knipscheer P, Enoiu M, Angelov T, Sun J, Griffith JD, Ellenberger TE, Schärer OD, Walter JC. 2008. Mechanism of replication‐coupled DNA interstrand crosslink repair. Cell 134: 969 – 980.en_US
dc.identifier.citedreferenceSmogorzewska A, Matsuoka S, Vinciguerra P, McDonald ER III, Hurov KE, Luo J, Ballif BA, Gygi SP, Hofmann K, D'Andrea AD, Elledge SJ. 2007. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129: 289 – 301.en_US
dc.identifier.citedreferenceReid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R, Neveling K, Kelly P, Seal S, Freund M, Wurm M, Batish SD, Lach FP, Yetgin S, Neitzel H, Ariffin H, Tischkowitz M, Mathew CG, Auerbach AD, Rahman N. 2007. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA‐N and predispose to childhood cancer. Nat Genet 39: 162 – 164.en_US
dc.identifier.citedreferenceRoos WP, Tsaalbi‐Shtylik A, Tsaryk R, Güvercin F, de Wind N, Kaina B. 2009. The translesion polymerase Rev3L in the tolerance of alkylating anticancer drugs. Mol Pharmacol 76: 927 – 934.en_US
dc.identifier.citedreferenceRothfuss A, Grompe M. 2004. Repair kinetics of genomic interstrand DNA cross‐links: evidence for DNA double‐strand break‐dependent activation of the Fanconi anemia/BRCA pathway. Mol Cell Biol 24: 123 – 134.en_US
dc.identifier.citedreferenceSabbioneda S, Gourdin AM, Green CM, Zotter A, Giglia‐Mari G, Houtsmuller A, Vermeulen W, Lehmann AR. 2008. Effect of proliferating cell nuclear antigen ubiquitination and chromatin structure on the dynamic properties of the Y‐family DNA polymerases. Mol Biol Cell 19: 5193 – 5202.en_US
dc.identifier.citedreferenceSarkar S, Davies AA, Ulrich HD, McHugh PJ. 2006. DNA interstrand crosslink repair during G1 involves nucleotide excision repair and DNA polymerase zeta. EMBO J 25: 1285 – 1294.en_US
dc.identifier.citedreferenceSchenten D, Kracker S, Esposito G, Franco S, Klein U, Murphy M, Alt FW, Rajewsky K. 2009. Pol zeta ablation in B cells impairs the germinal center reaction, class switch recombination, DNA break repair, and genome stability. J Exp Med 206: 477 – 490.en_US
dc.identifier.citedreferenceSeki M, Wood RD. 2008. DNA polymerase theta (POLQ) can extend from mismatches and from bases opposite a (6–4) photoproduct. DNA Repair 7: 119 – 127.en_US
dc.identifier.citedreferenceSeki M, Marini F, Wood RD. 2003. POLQ (Polθ), a DNA polymerase and DNA‐dependent ATPase in human cells. Nucleic Acids Res 31: 6117 – 6126.en_US
dc.identifier.citedreferenceSeki M, Masutani C, Yang LW, Schuffert A, Iwai S, Bahar I, Wood RD. 2004. High‐efficiency bypass of DNA damage by human DNA polymerase Q. EMBO J 23: 4484 – 4494.en_US
dc.identifier.citedreferenceSeki M, Gearhart PJ, Wood RD. 2005. DNA polymerases and somatic hypermutation of immunoglobulin genes. EMBO Rep 6: 1143 – 1148.en_US
dc.identifier.citedreferenceSengerova B, Wang AT, McHugh PJ. 2011. Orchestrating the nucleases involved in DNA interstrand cross‐link (ICL) repair. Cell Cycle 10: 3999 – 4008.en_US
dc.identifier.citedreferenceShachar S, Ziv O, Avkin S, Adar S, Wittschieben J, Reiszner T, Chaney S, Friedberg EC, Wang Z, Carell T, Geacintov N, Livneh Z. 2009. Two‐polymerase mechanisms dictate error‐free and error‐prone translesion DNA synthesis in mammals. EMBO J 28: 383 – 393.en_US
dc.identifier.citedreferenceSharief FS, Vojta PJ, Ropp PA, Copeland WC. 1999. Cloning and chromosomal mapping of the human DNA polymerase theta (POLQ), the eighth human DNA polymerase. Genomics 59: 90 – 96.en_US
dc.identifier.citedreferenceSharma S, Shah NA, Joiner AM, Roberts KH, Canman CE. 2012b. DNA polymerase ζ is a major determinant of resistance to platinum‐based chemotherapeutic agents. Mol Pharmacol 81: 778 – 787.en_US
dc.identifier.citedreferenceShen X, Li L. 2010. Mutagenic repair of DNA interstrand crosslinks. Environ Mol Mutagen 51: 493 – 499.en_US
dc.identifier.citedreferenceShen X, Jun S, O'Neal LE, Sonoda E, Bemark M, Sale JE, Li L. 2006. REV3 and REV1 play major roles in recombination‐independent repair of DNA interstrand cross‐links mediated by monoubiquitinated proliferating cell nuclear antigen (PCNA). J Biol Chem 281: 13869 – 13872.en_US
dc.identifier.citedreferenceShen X, Do H, Li Y, Chung WH, Tomasz M, de Winter JP, Xia B, Elledge SJ, Wang W, Li L. 2009. Recruitment of fanconi anemia and breast cancer proteins to DNA damage sites is differentially governed by replication. Mol Cell 35: 716 – 723.en_US
dc.identifier.citedreferenceShima N, Hartford SA, Duffy T, Wilson LA, Schimenti KJ, Schimenti JC. 2003. Phenotype‐based identification of mouse chromosome instability mutants. Genetics 163: 1031 – 1040.en_US
dc.identifier.citedreferenceShima N, Munroe RJ, Schimenti JC. 2004. The mouse genomic instability mutation chaos1 is an allele of Polθ that exhibits genetic interaction with Atm. Mol Cell Biol 24: 10381 – 10389.en_US
dc.identifier.citedreferenceShiomi N, Mori M, Tsuji H, Imai T, Inoue H, Tateishi S, Yamaizumi M, Shiomi T. 2007. Human RAD18 is involved in S phase‐specific single‐strand break repair without PCNA monoubiquitination. Nucleic Acids Res 35: e9.en_US
dc.identifier.citedreferenceSimpson LJ, Sale JE. 2003. Rev1 is essential for DNA damage tolerance and non‐templated immunoglobulin gene mutation in a vertebrate cell line. EMBO J 22: 1654 – 1664.en_US
dc.identifier.citedreferenceSims AE, Spiteri E, Sims RJ, 3rd, Arita AG, Lach FP, Landers T, Wurm M, Freund M, Neveling K, Hanenberg H, Auerbach AD, Huang TT. 2007. FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nat Struct Mol Biol 14: 564 – 567.en_US
dc.identifier.citedreferenceSinden RR, Cole RS. 1978a. Repair of cross‐linked DNA and survival of Escherichia coli treated with psoralen and light: Effects of mutations influencing genetic recombination and DNA metabolism. J Bacteriol 136: 538 – 547.en_US
dc.identifier.citedreferenceSinden RR, Cole RS. 1978b. Topography and kinetics of genetic recombination in Escherichia coli treated with psoralen and light. Proc Natl Acad Sci USA 75: 2373 – 2377.en_US
dc.identifier.citedreferenceSladek FM, Munn MM, Rupp WD, Howardflanders P. 1989. In vitro repair of psoralen‐DNA cross‐links by RecA, UvrABC, and the 5′‐exonuclease of DNA polymerase I. J Biol Chem 264: 6755 – 6765.en_US
dc.identifier.citedreferenceSmogorzewska A, Desetty R, Saito TT, Schlabach M, Lach FP, Sowa ME, Clark AB, Kunkel TA, Harper JW, Colaiacovo MP, Elledge SJ. 2010. A genetic screen identifies FAN1, a Fanconi anemia‐associated nuclease necessary for DNA interstrand crosslink repair. Mol Cell 39: 36 – 47.en_US
dc.identifier.citedreferenceSong IY, Palle K, Gurkar A, Tateishi S, Kupfer GM, Vaziri C. 2010. Rad18‐mediated translesion synthesis of bulky DNA adducts is coupled to activation of the Fanconi anemia DNA repair pathway. J Biol Chem 285: 31525 – 31536.en_US
dc.identifier.citedreferenceSonoda E, Okada T, Zhao GY, Tateishi S, Araki K, Yamaizumi M, Yagi T, Verkaik NS, van GDC, Takata M, Takeda S. 2003. Multiple roles of Rev3, the catalytic subunit of Polζ in maintaining genome stability in vertebrates. EMBO J 22: 3188 – 3197.en_US
dc.identifier.citedreferenceStelter P, Ulrich HD. 2003. Control of spontaneous and damage‐induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425: 188 – 191.en_US
dc.identifier.citedreferenceStoepker C, Hain K, Schuster B, Hilhorst‐Hofstee Y, Rooimans MA, Steltenpool J, Oostra AB, Eirich K, Korthof ET, Nieuwint AW, Jaspers NG, Bettecken T, Joenje H, Schindler D, Rouse J, de Winter JP. 2011. SLX4, a coordinator of structure‐specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet 43: 138 – 141.en_US
dc.identifier.citedreferenceSvendsen JM, Smogorzewska A, Sowa ME, O'Connell BC, Gygi SP, Elledge SJ, Harper JW. 2009. Mammalian BTBD12/SLX4 assembles a holliday junction resolvase and is required for DNA repair. Cell 138: 63 – 77.en_US
dc.identifier.citedreferenceSzüts D, Marcus AP, Himoto M, Iwai S, Sale JE. 2008. REV1 restrains DNA polymerase ζ to ensure frame fidelity during translesion synthesis of UV photoproducts in vivo. Nucleic Acids Res 36: 6767 – 6780.en_US
dc.identifier.citedreferenceTakata K, Shimizu T, Iwai S, Wood RD. 2006. Human DNA polymerase N (POLN) is a low fidelity enzyme capable of error‐free bypass of 5S‐thymine glycol. J Biol Chem 281: 23445 – 23455.en_US
dc.identifier.citedreferenceTang M, Pham P, Shen X, Taylor J‐S, O'Donnell M, Woodgate R, Goodman MF. 2000. Roles of E. coli DNA polymerases IV and V in lesion‐targeted and untargeted SOS mutagenesis. Nature 404: 1014 – 1018.en_US
dc.identifier.citedreferenceTaniguchi T, Garcia‐Higuera I, Andreassen PR, Gregory RC, Grompe M, D'Andrea AD. 2002. S‐phase‐specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100: 2414 – 2420.en_US
dc.identifier.citedreferenceTemviriyanukul P, Meijers M, van Hees‐Stuivenberg S, Boei JJ, Delbos F, Ohmori H, de Wind N, Jansen JG. 2012. Different sets of translesion synthesis DNA polymerases protect from genome instability induced by distinct food‐derived genotoxins. Toxicol Sci 127: 130 – 138.en_US
dc.identifier.citedreferenceTissier A, Kannouche P, Reck M‐P, Lehmann AR, Fuchs RPP, Cordonnier A. 2004. Co‐localization in replication foci and interaction of human Y‐family members, DNA polymerase Polη and REVl protein. DNA Repair 3: 1503 – 1514.en_US
dc.identifier.citedreferenceVasquez KM. 2010. Targeting and processing of site‐specific DNA interstrand crosslinks. Environ Mol Mutagen 51: 527 – 539.en_US
dc.identifier.citedreferenceVaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V, Neveling K, Endt D, Kesterton I, Autore F, Fraternali F, Freund M, Hartmann L, Grimwade D, Roberts RG, Schaal H, Mohammed S, Rahman N, Schindler D, Mathew CG. 2010. Mutation of the RAD51C gene in a Fanconi anemia‐like disorder. Nat Genet 42: 406 – 409.en_US
dc.identifier.citedreferenceVenkitaraman AR. 2004. Tracing the network connecting brca and fanconi anaemia proteins. Nat Rev Cancer 4: 266 – 276.en_US
dc.identifier.citedreferenceWang X, Peterson CA, Zheng HY, Nairn RS, Legerski RJ, Li L. 2001. Involvement of nucleotide excision repair in a recombination‐independent and error‐prone pathway of DNA interstrand cross‐link repair. Mol Cell Biol 21: 713 – 720.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.