Show simple item record

Wrapping and dispersion of multiwalled carbon nanotubes improves electrical conductivity of protein–nanotube composite biomaterials

dc.contributor.authorVoge, Christopher M.en_US
dc.contributor.authorJohns, Jeremyen_US
dc.contributor.authorRaghavan, Mekhalaen_US
dc.contributor.authorMorris, Michael D.en_US
dc.contributor.authorStegemann, Jan P.en_US
dc.date.accessioned2012-12-11T17:37:36Z
dc.date.available2014-03-03T15:09:25Zen_US
dc.date.issued2013-01en_US
dc.identifier.citationVoge, Christopher M.; Johns, Jeremy; Raghavan, Mekhala; Morris, Michael D.; Stegemann, Jan P. (2013). "Wrapping and dispersion of multiwalled carbon nanotubes improves electrical conductivity of protein–nanotube composite biomaterials ." Journal of Biomedical Materials Research Part A 101A(1): 231-238. <http://hdl.handle.net/2027.42/94526>en_US
dc.identifier.issn1549-3296en_US
dc.identifier.issn1552-4965en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94526
dc.description.abstractComposites of extracellular matrix proteins reinforced with carbon nanotubes have the potential to be used as conductive biopolymers in a variety of biomaterial applications. In this study, the effect of functionalization and polymer wrapping on the dispersion of multiwalled carbon nanotubes (MWCNT) in aqueous media was examined. Carboxylated MWCNT were wrapped in either Pluronic ® F127 or gelatin. Raman spectroscopy and X‐ray photoelectron spectroscopy showed that covalent functionalization of the pristine nanotubes disrupted the carbon lattice and added carboxyl groups. Polymer and gelatin wrapping resulted in increased surface adsorbed oxygen and nitrogen, respectively. Wrapping also markedly increased the stability of MWCNT suspensions in water as measured by settling time and zeta potential, with Pluronic ® ‐wrapped nanotubes showing the greatest effect. Treated MWCNT were used to make 3D collagen–fibrin–MWCNT composite materials. Carboxylated MWCNT resulted in a decrease in construct impedance by an order of magnitude, and wrapping with Pluronic ® resulted in a further order of magnitude decrease. Functionalization and wrapping also were associated with maintenance of fibroblast function within protein–MWCNT materials. These data show that increased dispersion of nanotubes in protein–MWCNT composites leads to higher conductivity and improved cytocompatibility. Understanding how nanotubes interact with biological systems is important in enabling the development of new biomedical technologies. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A:231–238, 2013.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherCarbon Nanotubesen_US
dc.subject.otherCollagenen_US
dc.subject.otherFibroblasten_US
dc.subject.otherNanoparticleen_US
dc.subject.otherPluronicen_US
dc.subject.otherCompositeen_US
dc.titleWrapping and dispersion of multiwalled carbon nanotubes improves electrical conductivity of protein–nanotube composite biomaterialsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, 1101 Beal Ave., Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, 1101 Beal Ave., Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, 930 N. University Ave., Ann Arbor, Michigan 48108en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94526/1/34310_ftp.pdf
dc.identifier.doi10.1002/jbm.a.34310en_US
dc.identifier.sourceJournal of Biomedical Materials Research Part Aen_US
dc.identifier.citedreferenceGeorge JJ, Sengupta R, Bhowmick AK. Influence of functionalization of multi‐walled carbon nanotubes on the properties of ethylene vinyl acetate nanocomposites. J Nanosci Nanotechnol 2008; 8: 1913 – 1921.en_US
dc.identifier.citedreferenceKeefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat Nano 2008; 3: 434 – 439.en_US
dc.identifier.citedreferenceMacDonald RA, Voge CM, Kariolis M, Stegemann JP. Carbon nanotubes increase the electrical conductivity of fibroblast‐seeded collagen hydrogels. Acta Biomater 2008; 4: 1583 – 1592.en_US
dc.identifier.citedreferenceVoge CM, Kariolis M, MacDonald RA, Stegemann JP. Directional conductivity in SWNT‐collagen‐fibrin composite biomaterials through strain‐induced matrix alignment. J Biomed Mater Res A 2008; 86: 269 – 277.en_US
dc.identifier.citedreferenceBanerjee S, Hemraj‐Benny T, Wong SS. Covalent surface chemistry of single‐walled carbon nanotubes. Adv Mater 2005; 17: 17 – 29.en_US
dc.identifier.citedreferencePeng H, Alemany LB, Margrave JL, Khabashesku VN. Sidewall carboxylic acid functionalization of single‐walled carbon nanotubes. J Am Chem Soc 2003; 125: 15174 – 15182.en_US
dc.identifier.citedreferenceZhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z. Effect of chemical oxidation on the structure of single‐walled carbon nanotubes. J Phys Chem B 2003; 107: 3712 – 3718.en_US
dc.identifier.citedreferenceMoore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE. Individually suspended single‐walled carbon nanotubes in various surfactants. Nano Lett 2003; 3: 1379 – 1382.en_US
dc.identifier.citedreferenceWenseleers W, Vlasov II, Goovaerts E, Obraztsova ED, Lobach AS, Bouwen A. Efficient isolation and solubilization of pristine single‐walled nanotubes in bile salt micelles. Adv Funct Mater 2004; 14: 1105 – 1112.en_US
dc.identifier.citedreferenceCiofani G, Raffa V, Pensabene V, Menciassi A, Dario P. Dispersion of multi‐walled carbon nanotubes in aqueous pluronic F127 solutions for biological applications. Fuller Nanotub Car N 2009; 17: 11.en_US
dc.identifier.citedreferenceNativ‐Roth E, Shvartzman‐Cohen R, Bounioux C, Florent M, Zhang D, Szleifer I, Yerushalmi‐Rozen R. Physical adsorption of block copolymers to SWNT and MWNT: A nonwrapping mechanism. Macromolecules 2007; 40: 3676 – 3685.en_US
dc.identifier.citedreferenceSchmolka IR. Artificial skin I. Preparation and properties of pluronic F‐127 gels for treatment of burns. J Biomed Mater Res 1972; 6: 571 – 582.en_US
dc.identifier.citedreferenceDresselhaus MS, Dresselhaus G, Saito R, Jorio A. Raman spectroscopy of carbon nanotubes. Phys Reports 2005; 409: 47 – 99.en_US
dc.identifier.citedreferenceHiura H. Raman studies of carbon nanotubes. Chem Phys Lett 1993; 202: 509 – 512.en_US
dc.identifier.citedreferenceBehler K, Osswald S, Ye H, Dimovski S, Gogotsi Y. Effect of thermal treatment on the structure of multi‐walled carbon nanotubes. J Nanopart Res 2006; 8: 615 – 625.en_US
dc.identifier.citedreferenceSinani VA, Gheith MK, Yaroslavov AA, Rakhnyanskaya AA, Sun K, Mamedov AA, Wicksted JP, Kotov NA. Aqueous dispersions of single‐wall and multiwall carbon nanotubes with designed amphiphilic polycations. JACS 2005; 127: 3463 – 3472.en_US
dc.identifier.citedreferenceHu H, Yu A, Kim E, Zhao B, Itkis ME, Bekyarova E, Haddon RC. Influence of the zeta potential on the dispersability and purification of single‐walled carbon nanotubes. J Phys Chem B 2005; 109: 11520 – 11524.en_US
dc.identifier.citedreferenceMagnusson G, Olsson T, Nyberg J‐A. Toxicity of pluronic F‐68. Toxicol Lett 1986; 30: 203 – 207.en_US
dc.identifier.citedreferenceBardi G, Tognini P, Ciofani G, Raffa V, Costa M, Pizzorusso T. Pluronic‐coated carbon nanotubes do not induce degeneration of cortical neurons in vivo and in vitro. Nanomed Nanotechnol 2009; 5: 96 – 104.en_US
dc.identifier.citedreferenceMusumeci AW, Silva GG, Liu J‐W, Martens WN, Waclawik ER. Structure and conductivity of multi‐walled carbon nanotube/poly(3‐hexylthiophene) composite films. Polymer 2007; 48: 1667 – 1678.en_US
dc.identifier.citedreferenceSandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH. Ultra‐low electrical percolation threshold in carbon‐nanotube‐epoxy composites. Polymer 2003; 44: 5893 – 5899.en_US
dc.identifier.citedreferenceLi J, Ma PC, Chow WS, To CK, Tang BZ, Kim J‐K. Correlations between percolation threshold, dispersion state and aspect ratio of carbon nanotubes. Adv Funct Mater 2007; 17: 3207 – 3215.en_US
dc.identifier.citedreferenceQuent VMC, Loessner D, Friis T, Reichert JC, Hutmacher DW. Discrepancies between metabolic activity and DNA content as tool to assess cell proliferation in cancer research. J Cell Mol Med 2010; 14: 1003 – 1013.en_US
dc.identifier.citedreferenceWörle‐Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 2006; 6: 1261 – 1268.en_US
dc.identifier.citedreferenceWick P, Manser P, Limbach LK, Dettlaff‐Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 2007; 168: 121 – 131.en_US
dc.identifier.citedreferenceNimmagadda A, Thurston K, Nollert MU, McFetridge PS. Chemical modification of SWNT alters in vitro cell‐SWNT interactions. J Biomed Mater Res A 2006; 76: 614 – 625.en_US
dc.identifier.citedreferenceBelyanskaya L, Weigel S, Hirsch C, Tobler U, Krug HF, Wick P. Effects of carbon nanotubes on primary neurons and glial cells. NeuroToxicology 2009; 30: 702 – 711.en_US
dc.identifier.citedreferenceFarokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3: 16 – 20.en_US
dc.identifier.citedreferenceMartin CR, Kohli P. The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2003; 2: 29 – 37.en_US
dc.identifier.citedreferenceMoniruzzaman M, Winey KI. Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006; 39: 5194 – 5205.en_US
dc.identifier.citedreferenceColeman JN, Khan U, Gun'ko YK. Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 2006; 18: 689 – 706.en_US
dc.identifier.citedreferenceLuo SC, Xie H, Chen N, Yu H‐hua. Trinity DNA detection platform by ultrasmooth and functionalized PEDOT biointerfaces. ACS App Mater Inf 2009; 1: 1414 – 1419.en_US
dc.identifier.citedreferenceDong H, Cao X, Li CM. Functionalized polypyrrole film: Synthesis, characterization and potential applications in chemical and biological sensors. ACS App Mater Inf 2009; 1: 1599 – 1606.en_US
dc.identifier.citedreferenceSangodkar H, Sukeerthi S, Srinivasa RS, Lal R, Contractor AQ. A biosensor array based on polyaniline. Anal Chem 1996; 68: 779 – 783.en_US
dc.identifier.citedreferenceMacDonald RA, Laurenzi BF, Viswanathan G, Ajayan PM, Stegemann JP. Collagen‐carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res A 2005; 74: 489 – 496.en_US
dc.identifier.citedreferenceCrouzier T, Nimmagadda A, Nollert MU, McFetridge PS. Modification of single walled carbon nanotube surface chemistry to improve aqueous solubility and enhance cellular interactions. Langmuir 2008; 24: 13173 – 13181.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.