Show simple item record

Nanoscale structure of type I collagen fibrils: Quantitative measurement of D‐spacing

dc.contributor.authorErickson, Blakeen_US
dc.contributor.authorFang, Mingen_US
dc.contributor.authorWallace, Joseph M.en_US
dc.contributor.authorOrr, Bradford G.en_US
dc.contributor.authorLes, Clifford M.en_US
dc.contributor.authorBanaszak Holl, Mark M.en_US
dc.date.accessioned2013-01-03T19:36:38Z
dc.date.available2014-03-03T15:09:24Zen_US
dc.date.issued2013-01en_US
dc.identifier.citationErickson, Blake; Fang, Ming; Wallace, Joseph M.; Orr, Bradford G.; Les, Clifford M.; Banaszak Holl, Mark M. (2013). "Nanoscale structure of type I collagen fibrils: Quantitative measurement of D‐spacing." Biotechnology Journal 8(1): 117-126. <http://hdl.handle.net/2027.42/94732>en_US
dc.identifier.issn1860-6768en_US
dc.identifier.issn1860-7314en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94732
dc.description.abstractThis article details a quantitative method to measure the D‐periodic spacing of type I collagen fibrils using atomic force microscopy coupled with analysis using a two‐dimensional fast fourier transform approach. Instrument calibration, data sampling and data analysis are discussed and comparisons of the data to the complementary methods of electron microscopy and X‐ray scattering are made. Examples of the application of this new approach to the analysis of type I collagen morphology in disease models of estrogen depletion and osteogenesis imperfecta (OI) are provided. We demonstrate that it is the D‐spacing distribution, not the D‐spacing mean, that showed statistically significant differences in estrogen depletion associated with early stage osteoporosis and OI. The ability to quantitatively characterize nanoscale morphological features of type I collagen fibrils will provide important structural information regarding type I collagen in many research areas, including tissue aging and disease, tissue engineering, and gene knockout studies. Furthermore, we also envision potential clinical applications including evaluation of tissue collagen integrity under the impact of diseases or drug treatments. The distribution of Type I collagen fibril D‐spacing provides important morphological information regarding Type I collagen in diseases such as early stages of osteoporosis and osteogenesis Imperfecta . In this article, the authors use Atomic Force Microscopy (AFM) imaging combined with two Dimensional Fast Fourier Transform (2D FFT) analysis to quantitatively assess Type I collagen fibril D‐spacing. This methodology allows imaging and characterization of Type I collagen constituted biological tissues, hydrogels, and other collagen based biomaterials.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherCollagen Fibrilen_US
dc.subject.otherD‐Spacingen_US
dc.subject.other2D Fast Fourier Transformen_US
dc.subject.otherAtomic Force Microscopyen_US
dc.titleNanoscale structure of type I collagen fibrils: Quantitative measurement of D‐spacingen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumProgram in Biophysics, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumProgram in Applied Physics, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Physics, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109‐1055, USAen_US
dc.contributor.affiliationumDepartment of Physics, 450 Church Street, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherBiomedical Engineering, Indiana University‐Purdue University, Indianapolis, IN, USAen_US
dc.contributor.affiliationotherDepartment of Biomedical Engineering, 723 W. Michigan SL220D, Indiana University‐Purdue University Indianapolis, Indianapolis, IN 46202, USAen_US
dc.contributor.affiliationotherBone and Joint Center, Henry Ford Hospital, Detroit, MI, USAen_US
dc.contributor.affiliationotherMichigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, MI, USAen_US
dc.identifier.pmid23027700en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94732/1/117_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94732/2/biot_201200174_sm_suppinfo.pdf
dc.identifier.doi10.1002/biot.201200174en_US
dc.identifier.sourceBiotechnology Journalen_US
dc.identifier.citedreferenceBuehler, M. J., Keten, S., Ackbarow, T., Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture. Prog. Mater. Sci. 2008, 53, 1101 – 1241.en_US
dc.identifier.citedreferenceHulmes, D. J. S., Miller, A., Quasi‐hexagonal molecular packing in collagen fibrils. Nature 1979, 282, 878 – 880.en_US
dc.identifier.citedreferenceFraser, R. D. B., MacRae, T. P., Miller, A., Molecular packing in type I collagen fibrils. J. Mol. Biol. 1987, 193, 115 – 125.en_US
dc.identifier.citedreferenceOrgel, J. P. R. O., Miller, A., Irving, T. C., Fischetti, R. F. et al., The in situ supermolecular structure of type I collagen. Structure 2001, 9, 1061 – 1069.en_US
dc.identifier.citedreferenceTrus, B. L., Piez, K. A., Compressed microfibril models of the native collagen fibril. Nature 1980, 286, 300 – 301.en_US
dc.identifier.citedreferencePiez, K. A., Trus, B. L., A new model for packing of type‐I collagen molecules in the native fibril. Biosci. Rep. 1981, 1, 801 – 810.en_US
dc.identifier.citedreferenceGautieri, A., Vesentini, S., Redaelli, A., Buehler, M. J., Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 2011, 11, 757 – 766.en_US
dc.identifier.citedreferenceWallace, J. M., Chen, Q., Fang, M., Erickson, B. et al., Type I collagen exists as a distribution of nanoscale morphologies in teeth, bones, and tendons. Langmuir 2010, 26, 7349 – 7354.en_US
dc.identifier.citedreferenceWallace, J. M., Erickson, B., Les, C. M., Orr, B. G., Banaszak Holl, M. M., Distribution of type I collagen morphologies in bone: Relation to estrogen depletion in bone. Bone 2010, 46, 1349 – 1354.en_US
dc.identifier.citedreferenceFang, M., Liroff, K. G., Turner, A. S., Les, C. M. et al., Estrogen depletion results in nanoscale morphology changes in dermal collagen. J. Invest. Dermatol. 2012, 132, 1791 – 1797.en_US
dc.identifier.citedreferenceWallace, J. M., Orr, B. G., Marini, J. C., Banaszak Holl, M. M., Nanoscale morphology of type I collagen is altered in the Brtl mouse model of osteogenesis imperfecta. J. Struct. Biology 2011, 173, 146 – 152.en_US
dc.identifier.citedreferenceFratzl, P., Fratzlzelman, N., Klaushofer, K., Collagen packing and mineralization – an X‐ray‐scattering investigation of turkey leg tendon. Biophys. J. 1993, 64, 260 – 266.en_US
dc.identifier.citedreferenceFang, M., Liroff, G. K., Turner, A. S., Les, C. M. et al., Estrogen Depletion results in nanoscale morphology changes in dermal collagen J. Invest. Dermatol. 2012, 132, 1791 – 1797.en_US
dc.identifier.citedreferenceHabelitz, S., Balooch, M., Marshall, S. J., Balooch, G., Marshall, G. W., In situ atomic force microscopy of partially demineralized human dentin collagen fibrils. J. Struct. Biol. 2002, 138, 227 – 236.en_US
dc.identifier.citedreferenceHassenkam, T., Fantner, G. E., Cutroni, J. A., Weaver, J. C. et al., High‐resolution AFM imaging of intact and fractured trabecular bone. Bone 2004, 35, 4 – 10.en_US
dc.identifier.citedreferenceBaranauskas, V., Garavello‐Freitas, I., Jingguo, Z., Cruz‐Hofling, M. A., Observation of the bone matrix structure of intact and regenerative zones of tibias by atomic force microscopy. J. Vacuum Sci. Technol. A 2001, 19, 1042 – 1045.en_US
dc.identifier.citedreferenceKindt, J. H., Thurner, P. J., Lauer, M. E., Bosma, B. L. et al., In situ observation of fluoride‐ion‐induced hydroxyapatite‐collagen detachment on bone fracture surfaces by atomic force microscopy. Nanotechnology 2007, 135102.en_US
dc.identifier.citedreferenceCremer, C., Kaufman, R., Gunkel, M., Pres, S. et al., Superresolution imaging of biological nanostructures by spectral precision distance microscopy. Biotechnol. J. 2011, 6, 1037 – 1051.en_US
dc.identifier.citedreferenceWallace, J. M., Applications of atomic force microscopy for the assessment of nanoscale morphological and mechanical properties of bone. Bone 2012, 50, 420 – 427.en_US
dc.identifier.citedreferenceMogilner, I. G., Ruderman, G., Grigera, J. R., Collagen stability, hydration and native state. J. Mol. Graphics Model. 2002, 21, 209 – 213.en_US
dc.identifier.citedreferencePrice, R. I., Lees, S., Kirschner, D. A., X‐ray diffraction analysis of tendon collagen at ambient and cryogenic temperatures: Role of hydration. Int. J. Biol. Macromol. 1997, 20, 23 – 33.en_US
dc.identifier.citedreferenceHabelitz, S., Balooch, M., Marshall, S. J., Balooch, G., Marshall, G. W. Jr., In situ atomic force microscopy of partially demineralized human dentin collagen fibrils. J. Struct. Biol. 2002, 138, 227 – 236.en_US
dc.identifier.citedreferenceBrodsky, B., Eikenberry, E. F., Cassidy, K., An unusual collagen periodicity in skin. Biochim. Biophys. Acta 1980, 621, 162 – 166.en_US
dc.identifier.citedreferenceSasaki, N., Shukunami, N., Matsushima, N., Izumi, Y., Time‐resolved X‐ray diffraction from tendon collagen during creep using synchrotron radiation. J. Biomech. 1999, 32, 285 – 292.en_US
dc.identifier.citedreferencePuxkandl, R., Zizak, I., Paris, O., Keckes, J. et al., Viscoelastic properties of collagen: Synchrotron radiation investigations and structural model. Philos. Trans. R. Soc. B Biol.Sci. 2002, 357, 191 – 197.en_US
dc.identifier.citedreferenceGupta, H. S., Zioupos, P., Fracture of bone tissue: The 'hows' and the 'whys'. Med. Eng. Phys. 2008, 30, 1209 – 1226.en_US
dc.identifier.citedreferenceDrits, V. A., Eberl, D. D., Srodon, J., XRD measurement of mean thickness, thickness distribution and strain for illite and illite‐smectite crystallites by the Bertaut‐Warren‐Averbach technique. Clays Clay Miner. 1998, 46, 38 – 50.en_US
dc.identifier.citedreferenceHaczynski, J., Tarkowski, R., Jarzabek, K., Slomczynska, M. et al., Human cultured skin fibroblasts express estrogen receptor alpha and beta. Int. J. Mol. Med. 2002, 10, 149 – 153.en_US
dc.identifier.citedreferenceDimitrios J, H., Ioannis I, A., Bone remodeling. Ann. N. Y. Acad. Sci. 2006, 1092, 385 – 396.en_US
dc.identifier.citedreferenceBrincat, M. P., Baron, Y. M., Galea, R., Estrogens and the skin. Climacteric 2005, 8, 110 – 123.en_US
dc.identifier.citedreferenceBrincat, M., Moniz, C. J., Studd, J. W. W., Long‐term effects of the menopause and sex hormones on skin thickness. Br. J. Obstet. Gynaecol. 1985, 92, 256 – 259.en_US
dc.identifier.citedreferenceChang, S.‐W., Shefelbine, S. J., Buehler, M. J., Structural and mechanical differences between collagen homo‐ and heterotrimers: Relevance for the molecular origin of brittle bone disease. Biophys. J. 2012, 102, 640 – 648.en_US
dc.identifier.citedreferenceLee, K. H., Kuczera, K., Banaszak Holl, M. M., The severity of osteogenesis imperfecta: A comparison to the relative free energy differences of collagen model peptides. Biopolymers 2011, 95, 182 – 193.en_US
dc.identifier.citedreferenceGautieri, A., Uzel, S., Vesentini, S., Redaelli, A., Buehler, M. J., Molecular and mesoscale mechanisms of osteogenesis imperfecta disease in collagen fibrils. Biophys. J. 2009, 97, 857 – 865.en_US
dc.identifier.citedreferenceFratzl, P. (Ed.), Collagen: Structure and Mechanics, Springer, New York 2008.en_US
dc.identifier.citedreferenceKadler, K. E., Holmes, D. F., Trotter, J. A., Chapman, J. A., Collagen fibril formation. Biochem. J. 1996, 316, 1 – 11.en_US
dc.identifier.citedreferenceKadler, K. E., Baldock, C., Bella, J., Boot‐Hanford, R. P., Collagens at a glance. J. Cell Sci. 2007, 120, 1955 – 1958.en_US
dc.identifier.citedreferenceCanty, E. G., Kadler, K. E., Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 2005, 118, 1341 – 1353.en_US
dc.identifier.citedreferenceBear, R. S., Long x‐ray diffraction spacing of collagen. J. Am. Chem. Soc. 1942, 64, 727.en_US
dc.identifier.citedreferenceSchmitt, F. O., Hall, C. E., Jakus, M. A., Electron microscope investigations of the structure of collagen. J. Cell. Comp. Phys. 1942, 20, 11 – 33.en_US
dc.identifier.citedreferenceHodge, A. J., Petruska, J. A., Recent studies with the electron microscope on ordered aggregates of the tropocollagen molecule, in: Ramachandran, G. N. (Ed.), Aspects of Protein Structure, Academic Press, New York 1963, p. 289.en_US
dc.identifier.citedreferenceBigi, A., Koch, M. H. J., Panzavolta, S., Roveri, N., Rubini, K., Structural aspects of the calcification process of lower vertebrate collagen. Connect. Tissue Res. 2000, 41, 37 – 43.en_US
dc.identifier.citedreferenceFraser, R. D. B., MacRae, T. P., Miller, A., Suzuki, E., Molecular conformation and packing in collagen fibrils. J. Mol. Biol. 1983, 167, 497 – 521.en_US
dc.identifier.citedreferenceEikenberry, E. F., Brodsky, B., Parry, D. A. D., Collagen fibril morphology in developing chick metatarsal tendons: I. X‐ray diffraction studies. Int. J.Biol. Macromol. 1982, 4, 322 – 328.en_US
dc.identifier.citedreferenceBrodsky, B., Eikenberry, E. F., Characterization of fibrous forms of collagen. Methods Enzymol. 1982, 82(PtA), 127 – 174.en_US
dc.identifier.citedreferenceChapman, J. A., Tzaphlidou, M., Meek, K. M., Kadler, K. E., The collagen fibril – a model system for studying the staining and fixation of a protein. Electron Microsc. Rev. 1990, 3, 143 – 182.en_US
dc.identifier.citedreferenceLin, A. C., Goh, M. C., Investigating the ultrastructure of fibrous long spacing collagen by parallel atomic force and transmission electron microscopy. Proteins 2002, 49, 378 – 384.en_US
dc.identifier.citedreferenceArsenault, A. L., Image analysis of mineralized and non‐mineralized type I collagen fibrils. J. Electron Microsc. Tech. 1991, 18, 262 – 268.en_US
dc.identifier.citedreferenceOrgel, J., Irving, T. C., Miller, A., Wess, T. J., Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. USA 2006, 103, 9001 – 9005.en_US
dc.identifier.citedreferenceHulmes, D. J. S., Wess, T. J., Prockop, D. J., Fratzl, P., Radial packing, order, and disorder in collagen fibrils. Biophys. J. 1995, 68, 1661 – 1670.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.