Show simple item record

The effect of sudden wind shear on the Earth's magnetosphere: Statistics of wind shear events and CCMC simulations of magnetotail disconnections

dc.contributor.authorBorovsky, Joseph E.en_US
dc.date.accessioned2013-01-03T19:37:07Z
dc.date.available2013-08-01T14:04:39Zen_US
dc.date.issued2012-06en_US
dc.identifier.citationBorovsky, Joseph E. (2012). "The effect of sudden wind shear on the Earth's magnetosphere: Statistics of wind shear events and CCMC simulations of magnetotail disconnections." Journal of Geophysical Research: Space Physics 117(A6): n/a-n/a. <http://hdl.handle.net/2027.42/94750>en_US
dc.identifier.issn0148-0227en_US
dc.identifier.issn2156-2202en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/94750
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherKluwer Academicen_US
dc.subject.otherVelocity Shearen_US
dc.subject.otherComet Tailsen_US
dc.subject.otherVorticityen_US
dc.subject.otherDiscontinuitiesen_US
dc.subject.otherMagnetotail Disconnectionen_US
dc.titleThe effect of sudden wind shear on the Earth's magnetosphere: Statistics of wind shear events and CCMC simulations of magnetotail disconnectionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumAlso at Department Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherSpace Science Institute, Boulder, Colorado, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/94750/1/jgra21938.pdf
dc.identifier.doi10.1029/2012JA017623en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceRiazantseva, M. O., G. N. Zastenker, and J. D. Richardson ( 2005 a), The characteristics of sharp (small‐scale) boundaries of solar wind plasma and magnetic field structures, Adv. Space Res., 35, 2147, doi: 10.1016/j.asr.2004.12.011.en_US
dc.identifier.citedreferenceTsurutani, B. T., and W. D. Gonzalez ( 1987 ), The cause of high‐intensity long‐duration continuous AE Activity (HILDCAAS): Interplanetary Alfven wave trains, Planet. Space Sci., 35, 405, doi: 10.1016/0032‐0633(87)90097‐3.en_US
dc.identifier.citedreferenceTsurutani, B. T., and C. M. Ho ( 1999 ), A review of discontinuities and Alfven waves in interplanetary space: ULYSSES results, Rev. Geophys., 37, 517, doi: 10.1029/1999RG900010.en_US
dc.identifier.citedreferenceTsurutani, B. T., A. J. Mannucci, B. A. Iijima, A. Komjathy, A. Saiton, T. Tsuda, O. P. Verkhoglyadova, W. D. Gonzalez, and F. L. Guarnieri ( 2006 ), Dayside ionospheric (GPS) response to corotating solar wind streams, in Recurrent Magnetic Storms: Corotating Solar Wind Streams, Geophys. Monogr. Ser., vol. 167, edited by B. Tsurutani et al., p. 245, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceTurner, J. M., and G. L. Siscoe ( 1971 ), Orientations of ‘rotational’ and ‘tangential’ discontinuities in the solar wind, J. Geophys. Res., 76, 1816, doi: 10.1029/JA076i007p01816.en_US
dc.identifier.citedreferenceVasquez, B. J., and J. V. Hollweg ( 1999 ), Formation of pressure‐balanced structures and fast waves from nonlinear Alfven waves, J. Geophys. Res., 104, 4681 – 4696.en_US
dc.identifier.citedreferenceVasquez, B. J., V. I. Abramenko, D. K. Haggerty, and C. W. Smith ( 2007 ), Numerous small magnetic field discontinuities of Bartels rotation 2286 and the potential role of Alfvenic turbulence, J. Geophys. Res., 112, A11102, doi: 10.1029/2007JA012504.en_US
dc.identifier.citedreferenceVerma, M. K. ( 1996 ), Nonclassical viscosity and resistivity of the solar wind plasma, J. Geophys. Res., 101, 27,543, doi: 10.1029/96JA02324.en_US
dc.identifier.citedreferenceViall, N. M., and L. Kepko, and H. E. Spence ( 2009 ), Relative occurrence rates and connection of discrete frequency oscillations in the solar wind density and dayside magnetosphere, J. Geophys. Res., 114, A01201, doi: 10.1029/2008JA013334.en_US
dc.identifier.citedreferenceVourlidas, A., C. J. Davis, C. J. Eyles, S. R. Crothers, R. A. Harrison, R. A. Howard, J. D. Moses, and D. G. Socker ( 2007 ), First direct observation of the interaction between a comet and a coronal mass ejection leading to a complete plasma tail disconnection, Astrophys. J., 668, L79, doi: 10.1086/522587.en_US
dc.identifier.citedreferenceWang, S. ( 1991 ), A mechanism for the formation of knots, kinks, and disconnection events in the plasma tail of comets, Astron. Astrophys., 243, 521.en_US
dc.identifier.citedreferenceWang, Y.‐M., N. R. Sheeley, D. G. Socker, R. A. Howard, G. E. Brueckner, D. J. Michels, D. Moses, O. C. St. Cyr, A. Llebaria, and J.‐P. Delaboudiniere ( 1998 ), Observations of correlated white‐light and extreme‐ultraviolet jets from polar coronal holes, Astrophys. J., 508, 899, doi: 10.1086/306450.en_US
dc.identifier.citedreferenceWaters, C. L., and B. J. Anderson, and K. Liou ( 2001 ), Estimation of global field aligned currents using Iridium magnetometer data, Geophys. Res. Lett., 28, 2165, doi: 10.1029/2000GL012725.en_US
dc.identifier.citedreferenceWegmann, R. ( 2000 ), The effect of some solar‐wind disturbances on the plasma tail of a comet: Models and observations, Astron. Astrophys., 358, 759.en_US
dc.identifier.citedreferenceWeimer, D. R., and J. H. King ( 2008 ), Improved calculations of interplanetary magnetic field phase front angles and propagation time delays, J. Geophys. Res., 113, A01105, doi: 10.1029/2007JA012452.en_US
dc.identifier.citedreferenceWiltberger, M., R. E. Lopez, and J. G. Lyon ( 2005 ), Results from magnetospheric Gedanken experiments using the LFM, Adv. Space Res., 36, 1797, doi: 10.1016/j.asr.2004.11.043.en_US
dc.identifier.citedreferenceYamauchi, Y., S. T. Suess, and T. Sakurai ( 2003 ), Relation between polar plumes and fine structure in the solar wind from Ulysses high‐latitude observations, AIP Conf. Proc., 679, 255, doi: 10.1063/1.1618589.en_US
dc.identifier.citedreferenceYang, G., and J. V. Hollweg ( 1991 ), The effects of velocity shear on the resonance absorption of MHD surface waves: Cold plasma, J. Geophys. Res., 96, 13,807, doi: 10.1029/91JA01407.en_US
dc.identifier.citedreferenceYi, Y., F. M. Caputo, and J. C. Brandt ( 1994 ), Disconnection events (DEs) and sector boundaries: The evidence from comet Halley 1985–1986, Planet. Space Sci., 42, 705, doi: 10.1016/0032‐0633(94)90111‐2.en_US
dc.identifier.citedreferenceYi, Y., R. J. Walker, T. Ogino, and J. C. Brandt ( 1996 ), Global magnetohydrodynamic simulation of a comet crossing the heliospheric current sheet, J. Geophys. Res., 101, 27,585, doi: 10.1029/96JA02235.en_US
dc.identifier.citedreferenceYoshizawa, A., and N. Yokoi ( 1996 ), Stationary large‐scale magnetic fields generated by turbulent motion in a spherical region, Phys. Plasmas, 3, 3604, doi: 10.1063/1.871952.en_US
dc.identifier.citedreferenceZhao, L., T. H. Zurbuchen, and L. A. Fisk ( 2009 ), Global distribution of the solar wind during solar cycle 23: ACE observations, Geophys. Res. Lett., 36, L14104, doi: 10.1029/2009GL039181.en_US
dc.identifier.citedreferenceAlevizos, A., J. Plygiannakis, A. Kakouris, and X. Moussas ( 1999 ), A method for spherical harmonic analysis of Compton‐Getting corrected 3‐D energetic particle distributions, Sol. Phys., 186, 401, doi: 10.1023/A:1005145021168.en_US
dc.identifier.citedreferenceAlfvén, H. ( 1957 ), On the theory of comet tails, Tellus, 9, 92, doi: 10.1111/j.2153‐3490.1957.tb01855.x.en_US
dc.identifier.citedreferenceAnderson, B. J., M. J. Engebretson, S. P. Rounds, L. J. Zanetti, and T. A. Potemra ( 1990 ), A statistical study of Pc 3–5 pulsations observed by the AMPTE/CCE magnetic fields experiment: 1. Occurrence distributions, J. Geophys. Res., 95, 10,495, doi: 10.1029/JA095iA07p10495.en_US
dc.identifier.citedreferenceBavassano, B., and R. Bruno ( 1992 ), On the role of interplanetary sources in the evolution of low‐frequency Alfvenic turbulence in the solar wind, J. Geophys. Res., 97, 19,129, doi: 10.1029/92JA01510.en_US
dc.identifier.citedreferenceBelcher, J. W., and L. Davis ( 1971 ), Large‐amplitude Alfven waves in the interplanetary medium, 2, J. Geophys. Res., 76, 3534, doi: 10.1029/JA076i016p03534.en_US
dc.identifier.citedreferenceBellaire, P. J. ( 2004 ), Space weather research in the US Air Force Office of Scientific Research, in Effects of Space Weather on Technology Infrastructure, edited by I. A. Daglis, p. 319, Kluwer Academic, Dordrecht, Netherlands, doi: 10.1007/1‐4020‐2754‐0_17.en_US
dc.identifier.citedreferenceBellaire, P. J. ( 2006 ), Community Coordinated Modeling Center 2005 Workshop report, Space Weather, 4, S02004, doi: 10.1029/2005SW000206.en_US
dc.identifier.citedreferenceBiermann, L. ( 1951 ), Kometenschweife und solare Korpuskularstrahlung, Z. Astrophys., 29, 274.en_US
dc.identifier.citedreferenceBiermann, L., and R. Lust ( 1963 ), Comets: Structure and dynamics of tails, in The Moon Meteorites and Comets, edited by B. M. Middlehurst and G. P. Kuiper, pp. 618 – 638, Univ. of Chicago Press, Chicago, Ill.en_US
dc.identifier.citedreferenceBirn, J., G. Yur, H. U. Rahman, and S. Minaami ( 1992 ), On the termination of the closed field line region of the magnetotail, J. Geophys. Res., 97, 14,833, doi: 10.1029/92JA01145.en_US
dc.identifier.citedreferenceBiskamp, D., and H. Welter ( 1989 ), Dynamics of decaying two‐dimensional magnetoghydrodynamic turbulence, Phys. Fluids B, 1, 1964.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 2006 ), The eddy viscosity and flow properties of the solar wind: CIRs, CME sheaths, and solar‐wind/magnetosphere coupling, Phys. Plasmas, 13, 056505, doi: 10.1063/1.2200308.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 2008 ), The flux‐tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?, J. Geophys. Res., 113, A08110, doi: 10.1029/2007JA012684.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 2010 ), On the variations of the solar‐wind magnetic field about the Parker‐spiral direction, J. Geophys. Res., 115, A09101, doi: 10.1029/2009JA015040.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 2012 a), The velocity and magnetic‐field fluctuations of the solar wind at 1 AU: Statistical analysis of Fourier spectra and correlations with plasma properties, J. Geophys. Res., 117, A05104, doi: 10.1029/2011JA017499.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 2012 b), Looking for evidence of mixing in the solar wind from 0,31 to 0.98 AU, J. Geophys. Res., doi: 10.1029/2012JA017525, in press.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2010 a), Solar‐wind turbulence and shear: A superposed‐epoch analysis of corotating interaction regions at 1 AU, J. Geophys. Res., 115, A10101, doi: 10.1029/2009JA014966.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2010 b), The magnetic field at geosynchronous orbit during high‐speed‐stream‐driven storms: Connections to the solar wind, the plasma sheet, and the outer electron radiation belt, J. Geophys. Res., 115, A08217, doi: 10.1029/2009JA015116.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2011 ), No evidence for the heating of the solar wind at strong current sheets, Astrophys. J., 739, L61, doi: 10.1088/2041‐8205/739/2/L61.en_US
dc.identifier.citedreferenceBorovsky, J. E., and S. P. Gary ( 2009 ), On viscosity and the Reynolds number of MHD turbulence in collisionless plasmas: Coulomb collisions, Landau damping, and Bohm diffusion, Phys. Plasmas, 16, 082307, doi: 10.1063/1.3155134.en_US
dc.identifier.citedreferenceBorovsky, J. E., and S. P. Gary ( 2011 ), Electron‐ion Coulomb scattering and the electron Landau damping of Alfven waves in the solar wind, J. Geophys. Res., 116, A07101, doi: 10.1029/2010JA016403.en_US
dc.identifier.citedreferenceBorovsky, J. E., M. Hesse, J. Birn, and M. M. Kuznetsova ( 2008 ), What determines the reconnection rate at the dayside magnetosphere?, J. Geophys. Res., 113, A07210, doi: 10.1029/2007JA012645.en_US
dc.identifier.citedreferenceBrandt, J. C. ( 1968 a), Ionic comet tails and peculiar motions in the solar wind, Astron. J., 73, S6.en_US
dc.identifier.citedreferenceBrandt, J. C. ( 1968 b), The physics of comet tails, Annu. Rev. Astron. Astrophys., 6, 267, doi: 10.1146/annurev.aa.06.090168.001411.en_US
dc.identifier.citedreferenceBrandt, J. C., and J. Hardorp ( 1970 ), Ionic comet tails and the direction of the solar wind, Astron. Astrophys., 5, 322.en_US
dc.identifier.citedreferenceBrandt, J. C., and J. Heise ( 1970 ), Interplanetary gas. XV. Nonradial plasma motions from the orientations of comet tails, Astrophys. J., 159, 1057, doi: 10.1086/150383.en_US
dc.identifier.citedreferenceBrandt, J. C., and M. Snow ( 2000 ), Heliospheric latitude variations of properties of cometary plasma tails: A test of the Ulysses Comet watch paradigm, Icarus, 148, 52, doi: 10.1006/icar.2000.6484.en_US
dc.identifier.citedreferenceBrandt, J. C., R. G. Roosen, and R. S. Harrington ( 1972 ), Interplanetary gas. XVII. An astrometric determination of solar‐wind velocities from orientations of ionic comet tails, Astrophys. J., 177, 277, doi: 10.1086/151706.en_US
dc.identifier.citedreferenceBrandt, J. C., J. D. Hawley, and M. B. Niedner ( 1980 ), A very rapid turning of the plasma‐tail of Comet Brandfield 1979l on 1980 February 6, Astrophys. J., 241, L51, doi: 10.1086/183359.en_US
dc.identifier.citedreferenceBruno, R., V. Carbone, P. Veltri, E. Pietropaolo, and B. Bavassano ( 2001 ), Identifying intermittency events in the solar wind, Planet. Space Sci., 49, 1201, doi: 10.1016/S0032‐0633(01)00061‐7.en_US
dc.identifier.citedreferenceBuffington, A., M. M. Bisi, J. M. Clover, P. P. Hick, B. V. Jackson, and T. A. Kuchar ( 2008 ), Analysis of plasma‐tail motions for Comets C/2001 Q4(NEAT) and C/200 T7(LINEAR) using observations from SMEI, Astrophys. J., 677, 798, doi: 10.1086/529039.en_US
dc.identifier.citedreferenceBurgess, D. ( 1989 ), On the effect of a tangential discontinuity on ions specularly reflected at an oblique shock, J. Geophys. Res., 94, 472, doi: 10.1029/JA094iA01p00472.en_US
dc.identifier.citedreferenceBurlaga, L. F. ( 1968 ), Micro‐scale structures in the interplanetary medium, Sol. Phys., 4, 67, doi: 10.1007/BF00146999.en_US
dc.identifier.citedreferenceBurlaga, L. F. ( 1969 ), Directional discontinuities in the interplanetary magnetic field, Sol. Phys., 7, 54, doi: 10.1007/BF00148406.en_US
dc.identifier.citedreferenceBurlaga, L. F. ( 1971 ), Nature and origin of directional discontinuities in the solar wind, J. Geophys. Res., 76, 4360, doi: 10.1029/JA076i019p04360.en_US
dc.identifier.citedreferenceBurlaga, L. F., and N. F. Ness ( 1969 ), Tangential discontinuities in the solar wind, Sol. Phys., 9, 467, doi: 10.1007/BF02391672.en_US
dc.identifier.citedreferenceBurrell, K. H. ( 1997 ), Effects of ExB velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices, Phys. Plasmas, 4, 1499, doi: 10.1063/1.872367.en_US
dc.identifier.citedreferenceChen, H., and D. Montgomery ( 1987 ), Turbulent MHD transport coefficients: An attempt at self‐consistency, Plasma Phys. Controlled Fusion, 29, 205, doi: 10.1088/0741‐3335/29/2/006.en_US
dc.identifier.citedreferenceClover, J. M., B. V. Jackson, A. Buffington, P. Hicks, and M. M. Bisi ( 2010 ), Solar wind speed inferred from cometary plasma tails using observations from STEREO HI‐1, Astrophys. J., 713, 394, doi: 10.1088/0004‐637X/713/1/394.en_US
dc.identifier.citedreferenceColeman, P. J. ( 1968 ), Turbulence, viscosity, and dissipation in the solar‐wind plasma, Astrophys. J., 153, 371, doi: 10.1086/149674.en_US
dc.identifier.citedreferenceColeman, P. J., L. Davis, and C. P. Sonett ( 1960 ), Steady component of the interplanetary magnetic field: Pioneer V, Phys. Rev. Lett., 5, 43, doi: 10.1103/PhysRevLett.5.43.en_US
dc.identifier.citedreferenceCowley, S. W. H. ( 1991 ), The structure and length of tail‐associated phenomena in the solar wind downstream from the Earth, Planet. Space Sci., 39, 1039, doi: 10.1016/0032‐0633(91)90110‐V.en_US
dc.identifier.citedreferenceCrooker, N. U., G. L. Siscoe, S. Shodhan, D. F. Webb, J. T. Gosling, and E. J. Smith ( 1993 ), Multiple heliospheric current sheets and coronal streamer belt dynamics, J. Geophys. Res., 98, 9371, doi: 10.1029/93JA00636.en_US
dc.identifier.citedreferenceCrooker, N. U., M. E. Burton, J. L. Phillips, E. J. Smith, and A. Balogh ( 1996 ), Heliospheric plasma sheets as small‐scale transients, J. Geophys. Res., 101, 2467, doi: 10.1029/95JA03148.en_US
dc.identifier.citedreferenceDeForest, C. E., S. P. Plunkett, and M. D. Andrews ( 2001 ), Observation of polar plumes at high solar altitudes, Astrophys. J., 546, 569, doi: 10.1086/318221.en_US
dc.identifier.citedreferenceDenskat, K. U., and F. M. Neubauer ( 1982 ), Properties of low‐frequency magnetic field fluctuations in the solar wind from 0.29 to 1.0 AU during solar minimum conditions: HELIOS 1 ad HELIOS 2, J. Geophys. Res., 87, 2215, doi: 10.1029/JA087iA04p02215.en_US
dc.identifier.citedreferenceDenton, M. H., J. E. Borovsky, R. B. Horne, R. L. McPherron, S. K. Morley, and B. T. Tsurutani ( 2008 ), High‐speed solar wind streams: A call for key research, Eos Trans. AGU, 89, 62, doi: 10.1029/2008EO070002.en_US
dc.identifier.citedreferenceDe Zeeuw, D. L., T. I. Gombosi, C. P. T. Groth, K. G. Powell, and Q. F. Stout ( 2000 ), An adaptive MHD method for global space weather simulations, IEEE Trans. Plasma Sci., 28, 1956.en_US
dc.identifier.citedreferenceDiamond, P. H., S.‐I. Itoh, K. Itoh, and T. S. Hahm ( 2005 ), Zonal flows in plasma: A review, Plasma Phys. Controlled Fusion, 47, R35, doi: 10.1088/0741‐3335/47/5/R01.en_US
dc.identifier.citedreferenceDmitruk, P., D. O. Gomez, and E. E. DeLuca ( 1998 ), Magnetohydrodynamic turbulence of coronal active regions and the distribution of nanoflares, Astrophys. J., 505, 974, doi: 10.1086/306182.en_US
dc.identifier.citedreferenceDrell, S. D., H. M. Foley, and M. A. Ruderman ( 1965 ), Drag and propulsion of large satellite in the ionosphere: An Alfven propulsion engine in space, J. Geophys. Res., 70, 3131, doi: 10.1029/JZ070i013p03131.en_US
dc.identifier.citedreferenceEastwood, J. P., S. J. Schwartz, T. S. Horbury, C. M. Carr, K.‐H. Glassmeier, I. Richter, C. Koenders, F. Plaschke, and J. A. Wild ( 2011 ), Transient Pc3 wave activity generated by a hot flow anomaly: Cluster, Rosetta, and ground‐based observations, J. Geophys. Res., 116, A08224, doi: 10.1029/2011JA016467.en_US
dc.identifier.citedreferenceElkington, S. R., M. K. Hudson, and A. A. Chan ( 1999 ), Acceleration of relativistic electrons via drift‐resonant interaction with toroidal‐mode PC‐5 ULF oscillations, Geophys. Res. Lett., 26, 3273, doi: 10.1029/1999GL003659.en_US
dc.identifier.citedreferenceErshkovich, A. I. ( 1980 ), Kelvin‐Helmholtz instability in type‐I comet tails and associated phenomena, Space Sci. Rev., 25, 3, doi: 10.1007/BF00200796.en_US
dc.identifier.citedreferenceErshkovich, A. I., A. A. Nusinov, and A. A. Chernikov ( 1973 ), Kelvin‐Helmholtz instability in Type I comet tails, Sov. Astron., 16, 705.en_US
dc.identifier.citedreferenceLee, L. C., and J. V. Olson ( 1980 ), Kelvin‐Helmholtz instability and the variation of geomagnetic pulsation activity, Geophys. Res. Lett., 7, 777, doi: 10.1029/GL007i010p00777.en_US
dc.identifier.citedreferenceFacskó, G., K. Kecskemety, G. Erdos, M. Tatrallyay, P. W. Daly, and I. Dandouras ( 2008 ), A statistical study of hot flow anomalies using Cluster data, Adv. Space Res., 41, 1286, doi: 10.1016/j.asr.2008.02.005.en_US
dc.identifier.citedreferenceFairfield, D. H. ( 1986 ), Time variations of the distant magnetotail, Geophys. Res. Lett., 13, 80, doi: 10.1029/GL013i001p00080.en_US
dc.identifier.citedreferenceFairfield, D. H. ( 1993 ), Solar wind control of the distant magnetotail: ISEE 3, J. Geophys. Res., 98, 21,265, doi: 10.1029/93JA01847.en_US
dc.identifier.citedreferenceFairfield, D. H., R. P. Lepping, L. A. Frank, K. L. Ackerson, W. R. Patterson, S. Kokubun, T. Yamamoto, K. Tsuruda, and M. Nakamura ( 1996 ), Geotail observations of an unusual magnetotail under very northward IMF conditions, J. Geomagn. Geoelectr., 48, 473, doi: 10.5636/jgg.48.473.en_US
dc.identifier.citedreferenceFedder, J. A., and J. G. Lyon ( 1995 ), The Earth's magnetosphere is 165 RE long: Self‐consistent currents, convection, magnetospheric structure, and processes for northward interplanetary magnetic field, J. Geophys. Res., 100, 3623, doi: 10.1029/94JA02633.en_US
dc.identifier.citedreferenceFejer, J. A., and K. F. Lee ( 1967 ), Guided propagation of Alfven waves in the magnetosphere, J. Plasma Phys., 1, 387, doi: 10.1017/S0022377800003408.en_US
dc.identifier.citedreferenceFeldman, W. C., J. T. Gosling, D. J. McComas, and J. L. Phillips ( 1993 ), Evidence for ion jets in the high‐speed solar wind, J. Geophys. Res., 98, 5593, doi: 10.1029/92JA02260.en_US
dc.identifier.citedreferenceFillingim, M. O., J. P. Eastwood, G. K. Parks, V. Angelopoulos, I. R. Mann, S. B. Mende, and A. T. Weatherwax ( 2011 ), Polar UVI and THEMIS GMAG observations of the ionospheric response to a hot flow anomaly, J. Atmos. Sol. Terr. Phys., 73, 137, doi: 10.1016/j.jastp.2010.03.001.en_US
dc.identifier.citedreferenceFisk, L. A., and T. H. Zurbuchen ( 2006 ), Distribution and properties of open magnetic flux outside of coronal holes, J. Geophys. Res., 111, A09115, doi: 10.1029/2005JA011575.en_US
dc.identifier.citedreferenceFreeman, J. W., and R. E. Lopez ( 1985 ), The cold solar wind, J. Geophys. Res., 90, 9885, doi: 10.1029/JA090iA10p09885.en_US
dc.identifier.citedreferenceFreeman, M. P., and S. K. Morley ( 2009 ), No evidence for externally triggered substorms based on superposed epoch analysis of IMF Bz, Geophys. Res. Lett., 36, L21101, doi: 10.1029/2009GL040621.en_US
dc.identifier.citedreferenceFujimoto, M., T. Mukai, A. Matsuoka, Y. Saito, H. Hayakawa, S. Kokubun, and R. P. Lepping ( 2000 ), Multi‐point observations of cold‐dense plasma sheet and its relation with tail‐LLBL, Adv. Space Res., 25, 1607, doi: 10.1016/S0273‐1177(99)00674‐2.en_US
dc.identifier.citedreferenceFulle, M., and L. Pansecchi ( 1984 ), A possible solar‐wind cause of the segmented appearance and of the changes in orientation of the plasma‐tail axis of Comet Austin 1982g, Icarus, 57, 410, doi: 10.1016/0019‐1035(84)90126‐X.en_US
dc.identifier.citedreferenceGabriel, A. H., F. Bely Dubau, and P. Lamaire ( 2003 ), The contribution of polar plumes to the fast solar wind, Astrophys. J., 589, 623, doi: 10.1086/374416.en_US
dc.identifier.citedreferenceGestrin, S. G., and V. M. Kontorovich ( 1984 ), Wind instability and the helical comet‐tail structures, Sov. Astron. Lett., 10, 329.en_US
dc.identifier.citedreferenceGhosh, S., W. H. Matthaeus, D. A. Roberts, and M. L. Goldstein ( 1998 ), The evolution of slab fluctuations in the presence of pressure‐balanced magnetic structures and velocity shears, J. Geophys. Res., 103, 23,691, doi: 10.1029/98JA02195.en_US
dc.identifier.citedreferenceGoertz, C. K., and R. W. Boswell ( 1979 ), Magnetosphere‐ionosphere coupling, J. Geophys. Res., 84, 7239, doi: 10.1029/JA084iA12p07239.en_US
dc.identifier.citedreferenceGoldstein, M. L. ( 2009 ), Observations and modeling of turbulence in the solar wind, in Turbulence, Dynamos, Accretion Disks, Pulsars and Collective Plasma Processes: Astrophysics and Space Science Proceedings, p. 21, Springer, New York,en_US
dc.identifier.citedreferenceGoldstein, M. L., D. A. Roberts, A. E. Deane, S. Ghosh, and H. K. Wong ( 1999 ), Numerical simulation of Alfvenic turbulence in the solar wind, J. Geophys. Res., 104, 14,437, doi: 10.1029/1998JA900128.en_US
dc.identifier.citedreferenceGombosi, T. I., D. L. De Zeeuw, R. M. Haberli, and K. G. Powell ( 1996 ), Three‐dimensional multiscale MHD model of cometary plasma environments, J. Geophys. Res., 101, 15,233, doi: 10.1029/96JA01075.en_US
dc.identifier.citedreferenceGombosi, T. I., K. C. Hansen, D. L. De Zeeuw, M. R. Combi, and K. G. Powell ( 1997 ), MHD simulation of comets: The plasma environment of Comet Hale‐Bopp, Earth Moon Planets, 79, 179, doi: 10.1023/A:1006289418660.en_US
dc.identifier.citedreferenceGombosi, T. I., D. L. De Zeeuw, C. P. T. Groth, and K. G. Powell ( 2000 ), Magnetospheric configuration for Parker‐spiral IMF conditions: Results of a 3D AMR MHD simulation, Adv. Space Res., 26, 139, doi: 10.1016/S0273‐1177(99)01040‐6.en_US
dc.identifier.citedreferenceGonzalez, W. D., F. L. Guarnieri, A. L. Clua‐Gonzalez, E. Echer, M. V. Alves, T. Ogino, and B. T. Tsurutani ( 2006 ), Magnetospheric energetics during HILDCAAs, in Recurrent Magnetic Storms: Corotating Solar Wind Streams, Geophys. Monogr. Ser., vol. 167, edited by B. Tsurutani et al., p. 175, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceGosling, J. T., H. Tian, and T. D. Phan ( 2011 ), Pulsed Alfven waves in the solar wind, Astrophys. J., 737, L35, doi: 10.1088/2041‐8205/737/2/L35.en_US
dc.identifier.citedreferenceGrappin, R., and M. Velli ( 1996 ), Waves and streams in the expanding solar wind, J. Geophys. Res., 101, 425, doi: 10.1029/95JA02147.en_US
dc.identifier.citedreferenceGreco, A., W. H. Matthaeus, S. Servidio, P. Chuychai, and P. Dmitruk ( 2009 ), Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence, Astrophys. J., 691, L111, doi: 10.1088/0004‐637X/691/2/L111.en_US
dc.identifier.citedreferenceGreenstadt, E. W., D. P. Traver, F. V. Coroniti, E. J. Smith, and J. A. Slavin ( 1990 ), Observations of the flank of Earth's bow shock to −100 R E by ISEE 3/ICE, Geophys. Res. Lett., 17, 753, doi: 10.1029/GL017i006p00753.en_US
dc.identifier.citedreferenceGringauz, K. I., V. V. Bezrukikh, V. D. Ozerov, and R. E. Rybchinskii ( 1960 ), A study of the interplanetary ionized gas, high‐energy electrons, and corpuscular radiation from the Sun by means of the three‐electrode trap for charged particles on the second Soviet cosmic rocket, Sov. Phys. Dokl., Engl. Transl., 5, 361.en_US
dc.identifier.citedreferenceHarwit, M., and F. Hoyle ( 1962 ), Plasma dynamics in comets. II. Influence of magnetic fields, Astrophys. J., 135, 875, doi: 10.1086/147331.en_US
dc.identifier.citedreferenceHoffmeister, C. ( 1943 ), Physicalische Untersuchunen and Kometen. I. Die Beziehungen des drimaren Schwifstrahls zum Radiusvector, Z. Asrophys., 22, 263.en_US
dc.identifier.citedreferenceHollweg, J. V., G. Yang, V. M. Cadez, and B. Gakovic ( 1990 ), Surface waves in an incompressible fluid: Resonant instability due to velocity shear, Astrophys. J., 349, 335, doi: 10.1086/168317.en_US
dc.identifier.citedreferenceHones, E. W., J. Birn, D. N. Baker, S. J. Bame, J. A. Slavin, E. J. Smith, and B. T. Tsurutani ( 1984 ), Detailed examination of a plasmoid in the distant magnetotail with ISEE 3, Geophys. Res. Lett., 11, 1046, doi: 10.1029/GL011i010p01046.en_US
dc.identifier.citedreferenceHones, E. W., R. D. Zwickl, T. A. Fritz, and S. J. Bame ( 1986 ), Structural and dynamical aspects of the distant magnetotail determined from ISEE‐3 plasma measurements, Planet. Space Sci., 34, 889, doi: 10.1016/0032‐0633(86)90001‐2.en_US
dc.identifier.citedreferenceHorbury, T. S., D. Burgess, M. Franz, and C. J. Owen ( 2001 ), Three spacecraft observations of solar wind discontinuities, Geophys. Res. Lett., 28, 677, doi: 10.1029/2000GL000121.en_US
dc.identifier.citedreferenceHsu, T.‐S., and R. L. McPherron ( 2006 ), The statistical characteristics of IMF triggered substorms, in Proceedings of the 8th International Conference on Substorms, edited by M. Syrjasuo and E. Donovan, p. 105, Inst. for Space Res., Calgary, Alberta, Canada.en_US
dc.identifier.citedreferenceIshizawa, A., and Y. Hattori ( 1998 ), Large coherent structure formation by magnetic stretching term in two‐dimensional MHD turbulence, J. Phys. Soc. Jpn., 67, 4302, doi: 10.1143/JPSJ.67.4302.en_US
dc.identifier.citedreferenceItoh, K., S.‐I. Itoh, P. H. Diamond, T. S. Hahm, A. Fujisawa, G. R. Tynan, M. Yagi, and Y. Nagashima ( 2006 ), Physics of zonal flows, Phys. Plasmas, 13, 055502, doi: 10.1063/1.2178779.en_US
dc.identifier.citedreferenceJanhunen, P., M. Palmroth, T. Laitinen, I. Honkonen, L. Juusola, G. Facsko, and T. I. Pulkkinen ( 2012 ), The GUMICS‐4 global MHD magnetosphere‐ionosphere coupling simulation, J. Atmos. Sol. Terr. Phys., 80, 48, doi: 10.1016/j.jastp.2012.03.006.en_US
dc.identifier.citedreferenceJia, Y. D., C. T. Russell, L. K. Jian, W. B. Manchester, O. Cohen, A. Vourlidas, K. C. Hansen, M. R. Combi, and T. I. Gombosi ( 2009 ), Study of the 2007 April 20 CME‐comet interaction event with an MHD model, Astrophys. J., 696, L56, doi: 10.1088/0004‐637X/696/1/L56.en_US
dc.identifier.citedreferenceJockers, K. ( 1981 ), Plasma dynamics in the tail of Comet Kohoutek 1973 XII, Icarus, 47, 397, doi: 10.1016/0019‐1035(81)90188‐3.en_US
dc.identifier.citedreferenceJockers, K. ( 1985 ), The ion tail of Comet Kohoutek 1973 XII during 17 days of solar wind gusts, Astron. Astrophys. Suppl. Ser., 62, 791.en_US
dc.identifier.citedreferenceJockers, K., and R. Lust ( 1973 ), Tail peculiarities in Comet Bennett caused by solar wind disturbances, Astron. Astrophys., 26, 113.en_US
dc.identifier.citedreferenceKaghashvili, E. K. ( 1999 ), Linear mechanism of Alfven wave dissipation induced by velocity shear: Phase mixing and damping, AIP Conf. Proc., 471, 345, doi: 10.1063/1.58768.en_US
dc.identifier.citedreferenceKivelson, M. G., and W. J. Hughes ( 1990 ), On the threshold for triggering substorms, Planet. Space Sci., 38, 211, doi: 10.1016/0032‐0633(90)90085‐5.en_US
dc.identifier.citedreferenceKlein, L., D. A. Roberts, and M. L. Goldstein ( 1991 ), Anisotropy and minimum variance directions of solar wind fluctuations in the outer heliosphere, J. Geophys. Res., 96, 3779, doi: 10.1029/90JA02240.en_US
dc.identifier.citedreferenceKlein, L., R. Bruno, B. Bavassano, and H. Rosenbauer ( 1993 ), Anisotropy and minimum variance of magnetohydrodynamic fluctuations in the inner heliosphere, J. Geophys. Res., 98, 17,461, doi: 10.1029/93JA01522.en_US
dc.identifier.citedreferenceKnetter, T., F. M. Neubauer, T. Horbury, and A. Balogh ( 2003 ), Discontinuity observations with Cluster, Adv. Space Res., 32 ( 4 ), 543, doi: 10.1016/S0273‐1177(03)00335‐1.en_US
dc.identifier.citedreferenceKnetter, T., F. M. Neubauer, T. Horbury, and A. Balogh ( 2004 ), Four‐point discontinuity observations using Cluster magnetic field data: A statistical survey, J. Geophys. Res., 109, A06102, doi: 10.1029/2003JA010099.en_US
dc.identifier.citedreferenceKorzhov, N. P., V. V. Mishin, and V. M. Tomozov ( 1984 ), On the role of plasma parameters and the Kelvin‐Helmholtz instability in a viscous interaction of solar wind streams, Planet. Space Sci., 32, 1169, doi: 10.1016/0032‐0633(84)90142‐9.en_US
dc.identifier.citedreferenceKorzhov, N. P., V. V. Mishin, and V. M. Tomozov ( 1985 ), On the viscous interaction of solar wind streams, Sov. Astron., Engl. Transl., 29, 215.en_US
dc.identifier.citedreferenceKoval, A., J. Safrankova, and Z. Nemecek ( 2005 ), A study of particle flows in hot flow anomalies, Planet. Space Sci., 53, 41, doi: 10.1016/j.pss.2004.09.027.en_US
dc.identifier.citedreferenceKuchar, T. A., A. Buffington, C. N. Arge, P. P. Hick, T. A. Howard, B. V. Jackson, J. C. Johnson, D. R. Mizuno, S. J. Tappan, and D. F. Webb ( 2008 ), Observations of a comet tail disruption induced by the passage of a CME, J. Geophys. Res., 113, A04101, doi: 10.1029/2007JA012603.en_US
dc.identifier.citedreferenceLazarian, A., and E. T. Vishniac ( 1999 ), Reconnection in a weakly stochastic field, Astrophys. J., 517, 700, doi: 10.1086/307233.en_US
dc.identifier.citedreferenceLiemohn, M. W., R. Ilie, N. Y. Ganushkina, A. J. Ridley, J. U. Kozyra, M. F. Thomsen, and J. E. Borovsky ( 2011 ), Testing the necessity of transient spikes in the storm time ring current drivers, J. Geophys. Res., 116, A04226, doi: 10.1029/2010JA015914.en_US
dc.identifier.citedreferenceLiu, W., T. E. Sarris, X. Li, R. Ergun, V. Angelopoulos, J. Bonnell, and K. H. Glassmeier ( 2010 ), Solar wind influence on Pc4 and Pc5 ULF wave activity in the inner magnetosphere, J. Geophys. Res., 115, A12201, doi: 10.1029/2010JA015299.en_US
dc.identifier.citedreferenceLongcope, D. W., and H. R. Strauss ( 1993 ), The coalescence instability and the development of current sheets in two‐dimensional magnetohydrodynamics, Phys. Fluids B, 5, 2858, doi: 10.1063/1.860673.en_US
dc.identifier.citedreferenceLust, R. ( 1959 ), Die Bewegung von Schwefmaterie des Kometen Mrkos (1957d), Z. Astrophys., 47, 205.en_US
dc.identifier.citedreferenceLust, R. ( 1961 ), Aktivitat von Kometenschweifen in Perioden geomagnetisher Ruhe, Z. Astrophys., 51, 163.en_US
dc.identifier.citedreferenceLust, R. ( 1962 ), Die Bewegung und Form von Sturkturen im Schweif des Kometen Mykow 1957d, Z. Astrophys., 54, 67.en_US
dc.identifier.citedreferenceLyon, J. G., J. A. Fedder, and C. M. Mobarry ( 2004 ), The Lyon‐Fedder‐Mobarry (LFM) global MHD magnetospheric simulation code, J. Atmos. Sol. Terr. Phys., 66, 1333, doi: 10.1016/j.jastp.2004.03.020.en_US
dc.identifier.citedreferenceLyons, L. R., G. T. Blanchard, J. C. Samson, R. P. Lepping, T. Yamamoto, and T. Moretto ( 1996 ), Coordinated observations demonstrating external substorm triggering, J. Geophys. Res., 101, 13,011, doi: 10.1029/95JA01987.en_US
dc.identifier.citedreferenceLyons, L. R., D.‐Y. Lee, H.‐J. Kim, J. A. Hwang, R. M. Thorne, R. B. Horne, and A. J. Smith ( 2009 ), Solar‐wind‐magnetosphere coupling, including relativistic electron energization, during high‐speed streams, J. Atmos. Sol. Terr. Phys., 71, 1059, doi: 10.1016/j.jastp.2008.04.016.en_US
dc.identifier.citedreferenceMaezawa, K., T. Hori, T. Mukai, Y. Saito, T. Yamamoto, S. Kokubun, and A. Nishida ( 1997 ), Structure of the distant magnetotail and its dependence on the IMF By component: Geotail observations, Adv. Space Sci., 20, 949, doi: 10.1016/S0273‐1177(97)00503‐6.en_US
dc.identifier.citedreferenceMalara, F. ( 1999 ), Theoretical aspects of MHD turbulence in the presence of large scale structures, AIP Conf. Proc., 471, 155, doi: 10.1063/1.58744.en_US
dc.identifier.citedreferenceMalara, F., L. Primavera, and P. Veltri ( 1996 ), Compressive fluctuations generated by time evolution of Alfvenic perturbations in the solar wind current sheet, J. Geophys. Res., 101, 21,597, doi: 10.1029/96JA01637.en_US
dc.identifier.citedreferenceMarkovskii, S. A., B. J. Vasquez, C. W. Smith, and J. V. Hollweg ( 2006 ), Dissipation of the perpendicular turbulent cascade in the solar wind, Astrophys. J., 639, 1177, doi: 10.1086/499398.en_US
dc.identifier.citedreferenceMaron, J., and P. Goldreich ( 2001 ), Simulations of incompressible magnetohydrodynamic turbulence, Astrophys. J., 554, 1175, doi: 10.1086/321413.en_US
dc.identifier.citedreferenceMarsch, E., K. H. Muhlhauser, R. Schwenn, H. Rosenbauer, W. Pilip, and F. M. Neubauer ( 1982 ), Solar wind protons: Three‐dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU, J. Geophys. Res., 87, 52, doi: 10.1029/JA087iA01p00052.en_US
dc.identifier.citedreferenceMathie, R. A., and I. R. Mann ( 2000 ), A correlation between extended intervals of ULF wave power and storm‐time geosynchronous relativistic electron flux enhancements, Geophys. Res. Lett., 27, 3261, doi: 10.1029/2000GL003822.en_US
dc.identifier.citedreferenceMcComas, D. J., S. J. Blame, P. Barker, W. C. Feldman, J. L. Phillips, P. Riley, and J. W. Griffee ( 1998 ), Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer, Space Sci. Rev., 86, 563, doi: 10.1023/A:1005040232597.en_US
dc.identifier.citedreferenceMcPherron, R. L., D. N. Baker, and N. U. Crooker ( 2009 ), Role of the Russell‐McPherron effect in the acceleration of relativistic electrons, J. Atmos. Sol. Terr. Phys., 71, 1032, doi: 10.1016/j.jastp.2008.11.002.en_US
dc.identifier.citedreferenceMendis, D. A. ( 2007 ), The solar‐comet interactions, in Handbook of the Solar‐Terrestrial Environment, edited by Y. Kamide and A. Chain, pp. 493 – 515, Springer, Berlin.en_US
dc.identifier.citedreferenceMenk, F. W., T. K. Yeoman, D. M. Wright, M. Lester, and F. Honary ( 2003 ), High‐latitude observations of impulse‐driven ULF pulsations in the ionosphere ad on the ground, Ann. Geophys., 21, 559, doi: 10.5194/angeo‐21‐559‐2003.en_US
dc.identifier.citedreferenceMerka, J., and A. Szabo ( 2004 ), Bow shock's geometry at the magnetospheric flanks, J. Geophys. Res., 109, A12224, doi: 10.1029/2004JA010567.en_US
dc.identifier.citedreferenceMigliuolo, S. ( 1984 ), Velocity shear instabilities in the anisotropic solar wind and the heating of ions perpendicular to the magnetic field, J. Geophys. Res., 89, 27, doi: 10.1029/JA089iA01p00027.en_US
dc.identifier.citedreferenceMiller, F. D. ( 1976 ), Solar‐cometary relations and the events of June‐August 1972, Space Sci. Rev., 19, 739, doi: 10.1007/BF00210649.en_US
dc.identifier.citedreferenceMiller, F. D. ( 1979 ), Comet Tago‐Sato‐Kosaka 1969 IX: Tail structure 25 December 1969 to 12 January 1970, Icarus, 37, 443, doi: 10.1016/0019‐1035(79)90007‐1.en_US
dc.identifier.citedreferenceMiller, R. S., F. Mashayek, V. Adumitroaie, and P. Givi ( 1996 ), Structure of homogeneous nonhelical magnetohydrodynamic turbulence, Phys. Plasmas, 3, 3304, doi: 10.1063/1.871599.en_US
dc.identifier.citedreferenceMininni, P., A. G. Pouquet, and D. C. Montgomery ( 2006 ), Small‐scale structures in three‐dimensional magnetohydrodynamic turbulence, Phys. Rev. Lett., 97, 244503, doi: 10.1103/PhysRevLett.97.244503.en_US
dc.identifier.citedreferenceMorley, S. K., and M. P. Freeman ( 2007 ), On the association between northward turnings of the interplanetary magnetic field and substorm onsets, Geophys. Res. Lett., 34, L08104, doi: 10.1029/2006GL028891.en_US
dc.identifier.citedreferenceNakagawa, T., A. Nishida, and T. Saito ( 1989 ), Planar magnetic structures in the solar wind, J. Geophys. Res., 94, 11,761, doi: 10.1029/JA094iA09p11761.en_US
dc.identifier.citedreferenceNaulin, V., A. Kendl, O. E. Garcia, A. H. Nielsen, and J. J. Rasmussen ( 2005 ), Shear flow generation and energetics in electromagnetic turbulence, Phys. Plasmas, 12, 052515, doi: 10.1063/1.1905603.en_US
dc.identifier.citedreferenceNeugebauer, M. ( 1985 ), Alignment of velocity and field changes across tangential discontinuities in the solar wind, J. Geophys. Res., 90, 6627, doi: 10.1029/JA090iA07p06627.en_US
dc.identifier.citedreferenceNeugebauer, M., D. R. Clay, B. E. Goldstein, B. T. Tsurutani, and R. D. Zwickl ( 1984 ), A reexamination of rotational and tangential discontinuities in the solar wind, J. Geophys. Res., 89, 5395, doi: 10.1029/JA089iA07p05395.en_US
dc.identifier.citedreferenceNeugebauer, M., C. J. Alexander, R. Schwenn, and A. K. Richter ( 1986 ), Tangential discontinuities in the solar wind: Correlated field and velocity changes and the Kelvin‐Helmholtz instability, J. Geophys. Res., 91, 13,694, doi: 10.1029/JA091iA12p13694.en_US
dc.identifier.citedreferenceNiedner, M. B., E. D. Rothe, and J. C. Brandt ( 1978 ), Interplanetary gas. XXII. Interaction of Comet Kohoutek's ion tail with the compression region of a solar‐wind corotating stream, Astrophys. J., 221, 1014, doi: 10.1086/156107.en_US
dc.identifier.citedreferenceOgino, T., R. J. Walker, and M. Ashour‐Abdalla ( 1986 ), A three‐dimensional MHD simulation of the interaction of the solar wind with the outflowing plasma from a comet, Geophys. Res. Lett., 13, 929, doi: 10.1029/GL013i009p00929.en_US
dc.identifier.citedreferenceOgino, T., R. J. Walker, and M. Ashour‐Abdalla ( 1988 ), An MHD simulation of the interaction of the solar wind with Comet Halley, J. Geophys. Res., 93, 9568, doi: 10.1029/JA093iA09p09568.en_US
dc.identifier.citedreferenceOieroset, M., J. Raeder, T. D. Phan, S. Wing, J. P. McPhadden, W. Li, M. Fujimoto, H. Reme, and A. Balogh ( 2005 ), Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22–24, 2003, Geophys. Res. Lett., 32, L12S07, doi: 10.1029/2004GL021523.en_US
dc.identifier.citedreferenceOwen, C. J., J. A. Slavin, I. G. Richardson, N. Murphy, and R. J. Hynds ( 1995 ), Average motion, structure and orientation of the distant magnetotail determined from remote sensing of the edge of the plasma sheet boundary layer with E > 35 keV ions, J. Geophys. Res., 100, 185, doi: 10.1029/94JA02417.en_US
dc.identifier.citedreferencePariat, E., S. K. Antiochos, and C. R. DeVore ( 2009 ), A model for solar polar jets, Astrophys. J., 691, 61, doi: 10.1088/0004‐637X/691/1/61.en_US
dc.identifier.citedreferenceParker, E. N. ( 1969 ), Theoretical studies of the solar wind phenomenon, Space Sci. Rev., 9, 325, doi: 10.1007/BF00175236.en_US
dc.identifier.citedreferenceParker, E. N. ( 1994 ), Spontaneous Current Sheets in Magnetic Fields, Oxford Univ. Press, New York.en_US
dc.identifier.citedreferenceParker, E. N. ( 2004 ), Tangential discontinuities in untidy magnetic topologies, Phys. Plasmas, 11, 2328, doi: 10.1063/1.1646674.en_US
dc.identifier.citedreferencePaterson, W. R., and L. A. Frank ( 1994 ), Survey of plasma parameters in Earth's distant magnetotail with the Geotail spacecraft, Geophys. Res. Lett., 21, 2971, doi: 10.1029/94GL02105.en_US
dc.identifier.citedreferencePaulikas, G. A., and J. B. Blake ( 1979 ), Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit, in Quantitative Modeling of Magnetospheric Processes, Geophys. Monogr. Ser., vol. 21, edited by W. P. Olson, p. 180, AGU, Washington, D. C., doi: 10.1029/GM021p0180.en_US
dc.identifier.citedreferencePhillips, J. L., S. J. Bame, S. P. Gary, J. T. Gosling, E. E. Scime, and R. J. Forsyth ( 1995 ), Radial and meridional trends in solar wind thermal electron temperature and anisotropy: Ulysses, Space Sci. Rev., 72, 109, doi: 10.1007/BF00768763.en_US
dc.identifier.citedreferencePilipenko, V., O. Kozyreva, V. Belakhovsky, M. J. Engebretson, and S. Samsonov ( 2010 ), Generation of magnetic and particle Pc5 pulsations during the recovery phase of strong magnetic storms, Proc. R. Soc. A, 466, 3363, doi: 10.1098/rspa.2010.0079.en_US
dc.identifier.citedreferencePilipp, W. G., H. Miggenrieder, K.‐H. Muhlhauser, H. Rosenbauer, and R. Schwenn ( 1990 ), Large scale variations of thermal electron parameters in the solar wind between 0.3 and 1 AU, J. Geophys. Res., 95, 6305, doi: 10.1029/JA095iA05p06305.en_US
dc.identifier.citedreferencePotapov, A. S., and T. N. Polyushkina ( 2010 ), Experimental evidence for direct penetration of ULF waves from the solar wind and their possible effect on acceleration of radiation belt electrons, Geomagn. Aeron., 50, 950, doi: 10.1134/S0016793210080049.en_US
dc.identifier.citedreferencePowell, K., P. Roe, T. Linde, T. Gombosi, and D. L. De Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284, doi: 10.1006/jcph.1999.6299.en_US
dc.identifier.citedreferenceRaeder, J. ( 1999 ), Modeling the magnetosphere for northward interplanetary magnetic field: Effects of electrical resistivity, J. Geophys. Res., 104, 17,357, doi: 10.1029/1999JA900159.en_US
dc.identifier.citedreferenceRaeder, J., Y. L. Wang, T. J. Fuller‐Rowell, and H. J. Singer ( 2001 ), Global simulation of magnetospheric space weather effects of the Bastille day storm, Sol. Phys., 204, 323, doi: 10.1023/A:1014228230714.en_US
dc.identifier.citedreferenceRauer, H., R. Wegmann, H. U. Schmidt, and K. Jockers ( 1995 ), 3‐D MHD simulations of the effect of commoving discontinuities in the solar wind on cometary plasma tails, Astron. Astrophys., 295, 529.en_US
dc.identifier.citedreferenceReeves, G. D., S. K. Morley, R. H. W. Friedel, M. G. Henderson, T. E. Cayton, G. Cunningham, J. B. Blake, R. A. Christensen, and D. Thomsen ( 2011 ), On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited, J. Geophys. Res., 116, A02213, doi: 10.1029/2010JA015735.en_US
dc.identifier.citedreferenceNakagawa, T. ( 1993 ), Solar source of the interplanetary planar magnetic structures, Sol. Phys., 147, 169, doi: 10.1007/BF00675493.en_US
dc.identifier.citedreferenceRiazantseva, M. O., G. N. Zastenker, J. D. Richardson, and P. E. Eiges ( 2005 b), Sharp boundaries of small‐ and middle‐scale solar wind structures, J. Geophys. Res., 110, A12110, doi: 10.1029/2005JA011307.en_US
dc.identifier.citedreferenceRichardson, J. D., and K. I. Paularena ( 2001 ), Plasma and magnetic field correlations in the solar wind, J. Geophys. Res., 106, 239, doi: 10.1029/2000JA000071.en_US
dc.identifier.citedreferenceRichardson, J. D., K. I. Paularena, A. J. Lazarus, and J. W. Belcher ( 1995 ), Radial evolution of the solar wind from IMP 8 to Voyager 2, Geophys. Res. Lett., 22, 325, doi: 10.1029/94GL03273.en_US
dc.identifier.citedreferenceRoberts, D. A., and S. Ghosh ( 1999 ), A kinematic analysis of the role of velocity shear in expanding plasmas, J. Geophys. Res., 104, 22,395, doi: 10.1029/1999JA900272.en_US
dc.identifier.citedreferenceRoberts, D. A., L. W. Klein, M. L. Goldstein, and W. H. Matthaeus ( 1987 ), Nature and evolution of magnetohydrodynamic fluctuations in the solar wind: Helios observations and Helios‐Voyager comparisons, J. Geophys. Res., 92, 12,023, doi: 10.1029/JA092iA11p12023.en_US
dc.identifier.citedreferenceRoberts, D. A., M. L. Goldstein, W. H. Matthaeus, and S. Ghosh ( 1992 ), Velocity shear generation of solar wind turbulence, J. Geophys. Res., 97, 17,115, doi: 10.1029/92JA01144.en_US
dc.identifier.citedreferenceRosenbauer, H., R. Schwenn, E. Marsch, B. Meyer, H. Miggenrieder, M. D. Montgomery, K. H. Muhlhauser, W. Pilipp, W. Voges, and S. M. Zink ( 1977 ), A survey on initial results of the Helios plasma experiment, J. Geophys. Res., 42, 561.en_US
dc.identifier.citedreferenceRostoker, G. ( 1983 ), Triggering of expansive phase intensifications of magnetospheric substorms by northward turnings of the interplanetary magnetic field, J. Geophys. Res., 88, 6981, doi: 10.1029/JA088iA09p06981.en_US
dc.identifier.citedreferenceRuderman, M. S., M. L. Goldstein, D. A. Roberts, A. Deane, and L. Ofman ( 1999 ), Alfven wave phase mixing driving by velocity shear in two dimensions, AIP Conf. Proc., 471, 337, doi: 10.1063/1.58808.en_US
dc.identifier.citedreferenceSafrankova, J., L. Prech, Z. Nemecek, D. G. Sibeck, and T. Mukai ( 2000 ), Magnetosheath response to the interplanetary magnetic field tangential discontinuity, J. Geophys. Res., 105, 25,113, doi: 10.1029/1999JA000435.en_US
dc.identifier.citedreferenceSanny, J., D. Judnick, M. B. Moldwin, D. Berube, and D. G. Sibeck ( 2007 ), Global profiles of compressional ultralow frequency wave power at geosynchronous orbit and their response to the solar wind, J. Geophys. Res., 112, A05224, doi: 10.1029/2006JA012046.en_US
dc.identifier.citedreferenceSchliecker, G. ( 2002 ), Structure and dynamics of cellular systems, Adv. Phys., 51, 1319, doi: 10.1080/00018730210140814.en_US
dc.identifier.citedreferenceSchlosser, W., and J. Hardorp ( 1968 ), Die Welligkeit der Schweifstrahlen des Kometen Morehouse 1908 III, Z. Astrophys., 69, 228.en_US
dc.identifier.citedreferenceSchmidt‐Voigt, M. ( 1989 ), Time‐dependent MHD simulations for cometary plasmas, Astron. Astrophys., 210, 433.en_US
dc.identifier.citedreferenceSchwartz, S. J., and E. Marsch ( 1983 ), Radial evolution of a single solar wind plasma parcel, J. Geophys. Res., 88, 9919, doi: 10.1029/JA088iA12p09919.en_US
dc.identifier.citedreferenceSchwartz, S. J., G. Paschmann, N. Sckopke, T. M. Bauer, M. Dunlop, A. N. Fazakeley, and M. F. Thomsen ( 2000 ), Conditions for the formation of hot flow anomalies at Earth's bow shock, J. Geophys. Res., 105, 12,639, doi: 10.1029/1999JA000320.en_US
dc.identifier.citedreferenceShprits, Y. Y., S. R. Elkington, N. P. Meredith, and D. A. Subbotin ( 2008 ), Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: Radial transport, J. Atmos. Sol. Terr. Phys., 70, 1679, doi: 10.1016/j.jastp.2008.06.008.en_US
dc.identifier.citedreferenceSibeck, D. G., G. L. Siscoe, J. A. Slavin, E. J. Smith, B. T. Tsurutani, and R. P. Lepping ( 1985 ), The distant magnetotail's response to a strong interplanetary magnetic field By: Twisting, flattening, and field line bending, J. Geophys. Res., 90, 4011, doi: 10.1029/JA090iA05p04011.en_US
dc.identifier.citedreferenceSibeck, D. G., et al. ( 1999 ), Comprehensive study of the magnetospheric response to a hot flow anomaly, J. Geophys. Res., 104, 4577, doi: 10.1029/1998JA900021.en_US
dc.identifier.citedreferenceSibeck, D. G., et al. ( 2000 ), Magnetopause motion driven by interplanetary magnetic field, J. Geophys. Res., 105, 25,155, doi: 10.1029/2000JA900109.en_US
dc.identifier.citedreferenceSiscoe, G. L., L. Davis, P. J. Coleman, E. J. Smith, and D. E. Jones ( 1968 ), Power spectra and discontinuities of the interplanetary magnetic field: Mariner 4, J. Geophys. Res., 73, 61, doi: 10.1029/JA073i001p00061.en_US
dc.identifier.citedreferenceSlavin, J. A., E. J. Smith, D. J. Sibeck, D. N. Baker, R. D. Zwickl, and S.‐I. Akasofu ( 1985 ), An ISEE 3 study of average and substorm conditions in the distant magnetosphere, J. Geophys. Res., 90, 10,875, doi: 10.1029/JA090iA11p10875.en_US
dc.identifier.citedreferenceSnow, M., J. C. Brandt, Y. Yi, C. C. Petersen, and H. Mikuz ( 2004 ), Comet Hyakutake (C/1996 B2), Spectacular disconnection event and the latitudinal structure of the solar wind, Planet. Space Sci., 52, 313, doi: 10.1016/j.pss.2003.10.001.en_US
dc.identifier.citedreferenceSofko, G. J., R. Greenwald, and W. A. Bristow ( 1995 ), Direct determination of large scale magnetospheric field aligned currents with SuperDARN, Geophys. Res. Lett., 22, 2041, doi: 10.1029/95GL01317.en_US
dc.identifier.citedreferenceSpreiter, J. R., A. L. Summers, and A. Y. Alksne ( 1966 ), Hydromagnetic flow around the magnetosphere, Planet. Space Sci., 14, 223, doi: 10.1016/0032‐0633(66)90124‐3.en_US
dc.identifier.citedreferenceSteinberg, J.‐L., and C. Lacombe ( 1992 ), An empirical model of the plasma density distribution in the distant Earth magnetosphere, Geophys. Res. Lett., 19, 2285, doi: 10.1029/92GL02490.en_US
dc.identifier.citedreferenceStumpff, P. ( 1961 ), Zur Korrelation zwischen dem Auftreten von Kometenschweifen des Typ I und der solaren Korpuskularstrahlung, Astron. Nachr., 286, 87, doi: 10.1002/asna.19612860208.en_US
dc.identifier.citedreferenceTakahashi, K., and A. Y. Ukhorskiy ( 2008 ), Timing analysis of the relationship between solar wind parameters and geosynchronous Pc5 amplitude, J. Geophys. Res., 113, A12204, doi: 10.1029/2008JA013327.en_US
dc.identifier.citedreferenceTarashuchuk, V. P. ( 1976 ), Physical characteristics of the solar wind from data of comet observations, Rep. TT F‐1671, NASA, Washington, D. C.en_US
dc.identifier.citedreferenceTerry, P. W. ( 2000 ), Does flow shear suppress turbulence in nonionized flows?, Phys. Plasmas, 7, 1653, doi: 10.1063/1.873985.en_US
dc.identifier.citedreferenceThomas, V. A., D. Winske, M. F. Thomsen, and T. G. Onsager ( 1991 ), Hybrid simulation of the formation of a hot flow anomaly, J. Geophys. Res., 96, 11,625, doi: 10.1029/91JA01092.en_US
dc.identifier.citedreferenceThomsen, M. F., J. T. Gosling, S. A. Fuselier, and S. J. Bame ( 1986 ), Hot, diamagnetic cavities upstream from the Earth's bow shock, J. Geophys. Res., 91, 2961, doi: 10.1029/JA091iA03p02961.en_US
dc.identifier.citedreferenceTripathi, L., A. K. Tiwari, and S. P. Agarwal ( 2007 ), Study of cosmic‐ray intensity variations associated with anomalous, long‐duration high‐speed solar wind streams in 2003, Sol. Phys., 241, 171, doi: 10.1007/s11207‐006‐0256‐5.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.