Show simple item record

Performance Improvement of Wave‐Like PEMFC Stack with Compound Membrane Electrode Assembly

dc.contributor.authorYi, P. Y.en_US
dc.contributor.authorPeng, L. F.en_US
dc.contributor.authorLai, X. M.en_US
dc.contributor.authorLin, Z. Q.en_US
dc.contributor.authorNi, J.en_US
dc.date.accessioned2013-01-03T19:40:18Z
dc.date.available2014-01-07T14:51:08Zen_US
dc.date.issued2012-12en_US
dc.identifier.citationYi, P. Y.; Peng, L. F.; Lai, X. M.; Lin, Z. Q.; Ni, J. (2012). "Performance Improvement of Wave‐Like PEMFC Stack with Compound Membrane Electrode Assembly." Fuel Cells 12(6): 1019-1026. <http://hdl.handle.net/2027.42/95122>en_US
dc.identifier.issn1615-6846en_US
dc.identifier.issn1615-6854en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95122
dc.description.abstractThe novel architecture of wave‐like proton exchange membrane fuel cell (PEMFC) stack developed in our previous work achieved peak volumetric power density and specific power of 2,715.9 W L –1 and 2,157.9 W kg –1 , respectively. However, there still existed perforated bipolar plates and the carbon fiber gas diffusion layer (GDL) was easy to cause damage during the fabrication process of undulate membrane electrode assembles (MEAs). In the present study, sintered stainless steel fiber felt (SSSFF) was employed to work as metallic GDL (MGDL) and bipolar plates simultaneously. Compound membrane electrode assembles (CMEAs) with serpentine and interdigitated flow channels were designed and fabricated using stamping process. A single cell with CMEA was assembled in house and the output performance was evaluated systemically. The results indicated that the peak volumetric power density and specific power of wave‐like PEMFC single with CMEA are 5,764.0 W L –1 and 4,693.5 W kg –1 respectively. This study achieved a significant performance improvement due to the concept of CMEA and may propose a possible means to meet the DOE's 2020 technical target that volumetric power density is 2,500 W L –1 and specific power is 2,000 W kg –1 for stack.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherCompound MEAen_US
dc.subject.otherMetallic GDLen_US
dc.subject.otherPEM Fuel Cellen_US
dc.subject.otherSpecific Poweren_US
dc.subject.otherVolumetric Power Densityen_US
dc.titlePerformance Improvement of Wave‐Like PEMFC Stack with Compound Membrane Electrode Assemblyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109‐2125, USAen_US
dc.contributor.affiliationotherShanghai Key Laboratory of Digital Autobody Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. Chinaen_US
dc.contributor.affiliationotherState Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, P. R. Chinaen_US
dc.contributor.affiliationotherShanghai Key Laboratory of Digital Autobody Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. Chinaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95122/1/1019_ftp.pdf
dc.identifier.doi10.1002/fuce.201200097en_US
dc.identifier.sourceFuel Cellsen_US
dc.identifier.citedreferenceW. Zhou, Y. Tang, M. Q. Pan, X. L. Wei, H. Q. Chen, J. H. Xiang, Int. J. Hydrogen Energy 2009, 34, 9745.en_US
dc.identifier.citedreferenceD. Mei, M. Qian, B. Liu, B. Jin, Z. Yao, Z. Chen, J. Power Sources 2012, 205, 367.en_US
dc.identifier.citedreferenceB. K. Kakati, V. Mohan, Fuel Cells 2008, 8, 45.en_US
dc.identifier.citedreferenceS. Gamburzev, A. J. Appleby, J. Power Sources 2002, 107, 5.en_US
dc.identifier.citedreferencehttp://www.ballard.com/files/PDF/Material_Handling/9SSL.pdf.en_US
dc.identifier.citedreferenceU.S. Department of Energy, Technical Plan‐Fuel cells, 2011, pp. 3.4–18, http://www1.eere.energy.gov/ hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf.en_US
dc.identifier.citedreferenceC. Du, P. W. Ming, M. Hou, J. Fu, Q. Shen, D. Liang, Y. Fu, X. Luo, Z. Shao, B. Yi, J. Power Sources 2010, 195, 794.en_US
dc.identifier.citedreferenceP. Y. Yi, L. F. Peng, X. M. Lai, D. A. Liu, J. Ni, Fuel Cells 2010, 10, 111.en_US
dc.identifier.citedreferenceP. Y. Yi, L. F. Peng, X. M. Lai, J. Ni, ASME J. Fuel Cell Sci. Technol. 2011, 8, 011011.en_US
dc.identifier.citedreferenceW. Yuan, Y. Tang, X. Yang, Z. Wan, Appl. Energy 2012, 94, 309.en_US
dc.identifier.citedreferenceA. Kumar, R. G. Reddy, J. Power Sources 2004, 129, 62.en_US
dc.identifier.citedreferenceO. J. Murphy, A. Cisar, E. Clarke, Electrochim. Acta 1998, 43, 3829.en_US
dc.identifier.citedreferenceF. Y. Zhang, S. G. Advani, A. K. Prasad, J. Power Sources 2008, 176, 293.en_US
dc.identifier.citedreferenceK. Fushinobu, D. Takahashi, K. Okazaki, J. Power Sources 2006, 158, 1240.en_US
dc.identifier.citedreferenceT. Hottinen, M. Mikkola, T. Mennola, P. Lund, J. Power Sources 2003, 118, 183.en_US
dc.identifier.citedreferenceY. Tang, W. Yuan, M. Pan, Z. Wan, Int. J. Hydrogen Energy 2010, 35, 9661.en_US
dc.identifier.citedreferenceY. Tang, W. Zhou, M. Q. Pan, H. Q. Chen, W. Y. Liu, H. Yu, Int. J. Hydrogen Energy 2008, 33, 2950.en_US
dc.identifier.citedreferenceP. Y. Yi, L. F. Peng, X. M. Lai, M. T. Li, J. Ni, Int. J. Hydrogen Energy 2012, 37, 11334.en_US
dc.identifier.citedreferenceP. Y. Yi, L. F. Peng, L. Z. Feng, P. Gan, X. M. Lai, J. Power Sources 2010, 195, 7061.en_US
dc.identifier.citedreferenceK. Feng, Y. Shen, H. Sun, D. Liu, Q. An, X. Cai, P. K. Chu, Int. J. Hydrogen Energy 2009, 34, 6771.en_US
dc.identifier.citedreferenceW.‐M. Yan, C.‐Y. Hsueh, C.‐Y. Soong, F. Chen, C.‐H. Cheng, S.‐C. Mei, Int. J. Hydrogen Energy 2007, 32, 4452.en_US
dc.identifier.citedreferenceM. Prasanna, E. A. Cho, T. H. Lim, I. H. Oh, Electrochim. Acta 2008, 53, 5434.en_US
dc.identifier.citedreferenceH. Tang, S. Wang, S. P. Jiang, M. Pan, J. Power Sources 2007, 170, 140.en_US
dc.identifier.citedreferenceM. G. Santarelli, M. F. Torchio, Energy Convers. Manage. 2007, 48, 40.en_US
dc.identifier.citedreferenceJ. T. Pukrushpan, A. G. Stefanopoulou, H. Peng, Control of Fuel Cell Power Systems‐Principles, Modeling, Analysis and Feedbackdesign, Springer, New York 2004.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.