Show simple item record

Human factors tools for improving simulation activities in continuing medical education

dc.contributor.authorSeagull, F. Jacoben_US
dc.date.accessioned2013-01-03T19:41:43Z
dc.date.available2013-10-18T17:47:31Zen_US
dc.date.issued2012-09en_US
dc.identifier.citationSeagull, F. Jacob (2012). "Human factors tools for improving simulation activities in continuing medical education ." Journal of Continuing Education in the Health Professions 32(4): 261-268. <http://hdl.handle.net/2027.42/95199>en_US
dc.identifier.issn0894-1912en_US
dc.identifier.issn1554-558Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95199
dc.description.abstractHuman factors (HF) is a discipline often drawn upon when there is a need to train people to perform complex, high‐stakes tasks and effectively assess their performance. Complex tasks often present unique challenges for training and assessment. HF has developed specialized techniques that have been effective in overcoming several of these challenges in work settings such as aviation, process control, and the military. Many HF techniques could be applied to simulation in continuing medical education to enhance effectiveness of simulation and training, yet these techniques are not widely known by medical educators. Three HF techniques are described that could benefit health care simulation in areas of training techniques, assessment, and task design: (1) bandwidth feedback techniques for designing better feedback and task guidance, (2) dual‐task assessment techniques that can differentiate levels of expertise in tasks where performance is essentially perfect, and (3) task abstraction techniques for developing task‐relevant fidelity for simulations. Examples of each technique are given from work settings in which these principles have been applied successfully. Application of these principles to medical simulation and medical education is discussed. Adapting these techniques to health care could improve training in medical education.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherFeedbacken_US
dc.subject.otherTask Analysisen_US
dc.subject.otherSimulationen_US
dc.subject.otherDual‐Task Paradigmen_US
dc.subject.otherHuman Factorsen_US
dc.titleHuman factors tools for improving simulation activities in continuing medical educationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMedical Educationen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan Medical School, 1208 Towsley Center, 1500 E. Medical Center Drive, SPC‐5201, Ann Arbor, MI 48109en_US
dc.contributor.affiliationumAssistant Professor, Department of Medical Education, University of Michigan Medical Schoolen_US
dc.identifier.pmid23280529en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95199/1/21154_ftp.pdf
dc.identifier.doi10.1002/chp.21154en_US
dc.identifier.sourceJournal of Continuing Education in the Health Professionsen_US
dc.identifier.citedreferenceHart SG, Battiste V. Flight test of a video game trainer. In: Proceedings of the Human Factors Society 26th Meeting. Santa Monica, CA: Human Factors and Ergonomics Society; 1992: 1291 – 1295.en_US
dc.identifier.citedreferenceKirwan B, Ainsworth L, eds. A Guide to Task Analysis. London, England: Taylor & Francis; 1992,en_US
dc.identifier.citedreferenceWickens CD. Multiple resources and mental workload. Hum. Factors. 2008; 50 ( 3 ): 449 – 455.en_US
dc.identifier.citedreferenceSimon HA. The Sciences of the Artificial. Cambridge, MA: MIT Press; 1981.en_US
dc.identifier.citedreferenceVincente KJ, Rasmussen J. Ecological interface design: theoretical foundations. IEEE Trans Syst Man Cybern. 1992; 22 ( 4 ): 589 – 606.en_US
dc.identifier.citedreferenceVicente KJ. Work domain analysis and task analysis: A difference that matters. In: Schraagen JM, Chipman SF, Shalin VL, eds. Cognitive Task Analysis. Mahwah, NJ: Lawrence Erlbaum; 2000: 101 – 118.en_US
dc.identifier.citedreferenceRoscoe SN. Simulator qualification: just as phony as it can be. Int J Aviat Psychol. 1991; 1 ( 4 ): 335 – 339.en_US
dc.identifier.citedreferenceSalkini MW, Doarn CR, Kiehl N, et al. The role of haptic feedback in laparoscopic training using the LapMentor II. J Endourol. 2010; 24 ( 1 ): 99 – 102.en_US
dc.identifier.citedreferenceMané AM, Donchin E. The Space Fortress game. Acta Psychologica. 1989; 71: 17 – 22.en_US
dc.identifier.citedreferenceGopher D, Weil M, Bareket T. Transfer of skill from a computer game trainer to flight. Hum Factors. 1994; 36: 387 – 405.en_US
dc.identifier.citedreferenceRosser JC Jr, Lynch PJ, Cuddihy L, et al. The impact of video games on training surgeons in the 21st century. Arch Surg. 2007; 142 ( 2 ): 181 – 186; discusssion 186.en_US
dc.identifier.citedreferenceBokhari R, Bollman‐McGregor J, Kahoi K, et al. Design, development, and validation of a take‐home simulator for fundamental laparoscopic skills: using Nintendo Wii for surgical training. Am Surg. 2010; 76 ( 6 ): 583 – 586.en_US
dc.identifier.citedreferenceKolga Schlickum M, Hedman L, Enochsson L, et al. Transfer of systematic computer game training in surgical novices on performance in virtual reality image guided surgical simulators. Stud Health Technol Inform. 2008; 132: 210 – 215.en_US
dc.identifier.citedreferenceLynch J, Aughwane P, Hammond TM. Video games and surgical ability: a literature review. J Surg Educ. 2010; 67 ( 3 ): 184 – 189.en_US
dc.identifier.citedreferenceMuresan C 3rd, Lee TH, Seagull J, Park AE. et al. Transfer of training in the development of intracorporeal suturing skill in medical student novices: a prospective randomized trial. Am J Surg. 2010; 200 ( 4 ): 537 – 541.en_US
dc.identifier.citedreferencePeters JH, Fried GM, Swanstrom LL, et al. Development and validation of a comprehensive program of education and assessment of the basic fundamentals of laparoscopic surgery. Surgery. 2004; 135 ( 1 ): 21 – 27.en_US
dc.identifier.citedreferenceSroka G, Feldman LS, Vassiliou MC, et al. Fundamentals of laparoscopic surgery simulator training to proficiency improves laparoscopic performance in the operating room‐a randomized controlled trial. Am J Surg. 2010; 199 ( 1 ): 115 – 120.en_US
dc.identifier.citedreferenceHorton W. Mix media, not metaphors. Technical Communications. 1994; 41 ( 4 ): 781 – 783.en_US
dc.identifier.citedreferenceSeagull FJ, George I, Ghaderi I, et al. Surgical Abdominal Wall (SAW): a novel simulator for training in ventral hernia repair. Surg Innov. 2009; 16 ( 4 ): 330 – 336.en_US
dc.identifier.citedreferenceMoore DE Jr, Green JS, Gallis HA. Achieving desired results and improved outcomes: integrating planning and assessment throughout learning activities. J Contin Educ Health Prof. 2009; 29 ( 1 ): 1 – 15.en_US
dc.identifier.citedreferenceBrannick MT, Prince A, Prince C, Salas E. et al. The measurement of team process. Hum Factors. 1995; 37 ( 3 ): 641 – 651.en_US
dc.identifier.citedreferenceSaleh GM, Gauba V, Sim D, et al. Motion analysis as a tool for the evaluation of oculoplastic surgical skill: evaluation of oculoplastic surgical skill. Arch Ophthalmol. 2008; 126 ( 2 ): 213 – 216.en_US
dc.identifier.citedreferenceInternational Ergonomics Association Executive Council. IEA defininition of ergonomics. In: Karwowski W, ed. International Encyclopedia of Ergonomics and Human Factors. New York, NY: Taylor & Francis; 2000.en_US
dc.identifier.citedreferenceGilbreth FB, Carey EG. Cheaper by the Dozen. New York, NY: T. Y. Crowell Co; 1948.en_US
dc.identifier.citedreferenceApgar V. A proposal for a new method of evaluation of the newborn infant. Curr Res Anesth Analg. 1953; 32 ( 32 ): 260 – 267.en_US
dc.identifier.citedreferenceRoscoe SN. Incremental transfer effectiveness. Hum Factors. 1971; 13 ( 6 ): 561 – 567.en_US
dc.identifier.citedreferenceSkinner BF. An operant analysis of problem solving. Behav Brain Sci. 1984; 7 ( 4 ): 583 – 591.en_US
dc.identifier.citedreferenceLintern G. Transfer of landing skill after training with supplementary visual cues. Hum Factors. 1980; 22 ( 1 ): 81 – 88.en_US
dc.identifier.citedreferenceLintern G, Roscoe SN, Sivier JE. Display principles, control dynamics and environmental factors in pilot training and transfer. Hum Factors. 1990; 32 ( 3 ): 299 – 317.en_US
dc.identifier.citedreferencede Groot S, de Winter JC, López García JM, et al. The effect of concurrent bandwidth feedback on learning the lane‐keeping task in a driving simulator. Hum Factors. 2011; 53 ( 1 ): 50 – 62.en_US
dc.identifier.citedreferenceLintern G. An informational perspective on skill transfer in human‐machine systems. Hum Factors. 1991; 33 ( 3 ): 251 – 266.en_US
dc.identifier.citedreferenceKahneman D, Slovic P, Tversky A. Judgment Under Uncertainty: Heuristics and Biases. New York, NY: Cambridge University Press; 1982.en_US
dc.identifier.citedreferenceHankins TC, Wilson GF. A comparison of heart rate, eye activity, EEG and subjective measures of pilot mental workload during flight. Aviat Space Environ Med. 1998; 69 ( 4 ): 360 – 367.en_US
dc.identifier.citedreferenceHancock PA, Meshkati N. Advances in Psychology, Vol. 52: Human Mental Workload. New York, NY: Elsevier Science; 1988.en_US
dc.identifier.citedreferenceWickens CD. Processing resources and attention. In: Damos DL, ed. Multiple Task Performance. London, England: Taylor & Francis; 1991: 3 – 34.en_US
dc.identifier.citedreferenceGentner DR. The acquisition of typewriting skill. Acta Psychologica. 1983; 54 ( 1 – 3 ): 233 – 248.en_US
dc.identifier.citedreferenceShaffer LH. Multiple attention in continuous verbal tasks. In Rabbitt PMA, Dornic S, eds. Attention and Performance V. New York, NY: Academic Press; 1975: 157 – 167.en_US
dc.identifier.citedreferencePashler H. Dual‐task interference in simple tasks: data and theory. Psychol Bull. 1994; 116 ( 2 ): 220 – 244.en_US
dc.identifier.citedreferenceGrondin S. Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys. 2010; 72 ( 3 ): 561 – 582.en_US
dc.identifier.citedreferenceWeinger MB, Reddy SB, Slagle JM. Multiple measures of anesthesia workload during teaching and nonteaching cases. Anesth Analg. 2004; 98 ( 5 ): 1419 – 1425.en_US
dc.identifier.citedreferenceStefanidis D, Scerbo MW, Montero PN, et al. Simulator training to automaticity leads to improved skill transfer compared with traditional proficiency‐based training: a randomized controlled trial. Ann Surg. 2012; 255 ( 1 ): 30 – 37.en_US
dc.identifier.citedreferenceO'Donnell RD, Eggemeier FT. Workload assessment methodology. In: Boff KR, Kaufman L, Thomas JP, eds. Handbook of Perception and Human Performance, Vol. 2: Cognitive Processes and Performance. New York, NY: John Wiley & Sons; 1986: 42‐1 – 42‐49.en_US
dc.identifier.citedreferenceDieckmann P, Gaba D, Rall M. Deepening the theoretical foundations of patient simulation as social practice. Simul Healthc. 2007; 2 ( 3 ): 183 – 193.en_US
dc.identifier.citedreferenceMilitello LG, Hutton RJB. Applied cognitive task analysis (ACTA): a practitioner's toolkit for understanding cognitive task demands. Ergonomics. 1998; 41 ( 11 ): 1618 – 1641.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.