Show simple item record

Mutations in KCND3 cause spinocerebellar ataxia type 22

dc.contributor.authorLee, Yi‐chungen_US
dc.contributor.authorDurr, Alexandraen_US
dc.contributor.authorMajczenko, Karenen_US
dc.contributor.authorHuang, Yen‐huaen_US
dc.contributor.authorLiu, Yu‐chaoen_US
dc.contributor.authorLien, Cheng‐changen_US
dc.contributor.authorTsai, Pei‐chienen_US
dc.contributor.authorIchikawa, Yaekoen_US
dc.contributor.authorGoto, Junen_US
dc.contributor.authorMonin, Marie‐lorraineen_US
dc.contributor.authorLi, Jun Z.en_US
dc.contributor.authorChung, Ming‐yien_US
dc.contributor.authorMundwiller, Emelineen_US
dc.contributor.authorShakkottai, Vikramen_US
dc.contributor.authorLiu, Tze‐tzeen_US
dc.contributor.authorTesson, Christelleen_US
dc.contributor.authorLu, Yi‐chunen_US
dc.contributor.authorBrice, Alexisen_US
dc.contributor.authorTsuji, Shojien_US
dc.contributor.authorBurmeister, Margiten_US
dc.contributor.authorStevanin, Giovannien_US
dc.contributor.authorSoong, Bing‐wenen_US
dc.date.accessioned2013-01-03T19:41:59Z
dc.date.available2014-01-07T14:51:09Zen_US
dc.date.issued2012-12en_US
dc.identifier.citationLee, Yi‐chung ; Durr, Alexandra; Majczenko, Karen; Huang, Yen‐hua ; Liu, Yu‐chao ; Lien, Cheng‐chang ; Tsai, Pei‐chien ; Ichikawa, Yaeko; Goto, Jun; Monin, Marie‐lorraine ; Li, Jun Z.; Chung, Ming‐yi ; Mundwiller, Emeline; Shakkottai, Vikram; Liu, Tze‐tze ; Tesson, Christelle; Lu, Yi‐chun ; Brice, Alexis; Tsuji, Shoji; Burmeister, Margit; Stevanin, Giovanni; Soong, Bing‐wen (2012). "Mutations in KCND3 cause spinocerebellar ataxia type 22." Annals of Neurology 72(6): 859-869. <http://hdl.handle.net/2027.42/95251>en_US
dc.identifier.issn0364-5134en_US
dc.identifier.issn1531-8249en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95251
dc.description.abstractObjective: To identify the causative gene in spinocerebellar ataxia (SCA) 22, an autosomal dominant cerebellar ataxia mapped to chromosome 1p21‐q23. Methods: We previously characterized a large Chinese family with progressive ataxia designated SCA22, which overlaps with the locus of SCA19. The disease locus in a French family and an Ashkenazi Jewish American family was also mapped to this region. Members from all 3 families were enrolled. Whole exome sequencing was performed to identify candidate mutations, which were narrowed by linkage analysis and confirmed by Sanger sequencing and cosegregation analyses. Mutational analyses were also performed in 105 Chinese and 55 Japanese families with cerebellar ataxia. Mutant gene products were examined in a heterologous expression system to address the changes in protein localization and electrophysiological functions. Results: We identified heterozygous mutations in the voltage‐gated potassium channel Kv4.3‐encoding gene KCND3 : an in‐frame 3‐nucleotide deletion c.679_681delTTC p.F227del in both the Chinese and French pedigrees, and a missense mutation c.1034G>T p.G345V in the Ashkenazi Jewish family. Direct sequencing of KCND3 further identified 3 mutations, c.1034G>T p.G345V, c.1013T>C p.V338E, and c.1130C>T p.T377M, in 3 Japanese kindreds. Immunofluorescence analyses revealed that the mutant p.F227del Kv4.3 subunits were retained in the cytoplasm, consistent with the lack of A‐type K + channel conductance in whole cell patch‐clamp recordings. Interpretation: Our data identify the cause of SCA19/22 in patients of diverse ethnic origins as mutations in KCND3 . These findings further emphasize the important role of ion channels as key regulators of neuronal excitability in the pathogenesis of cerebellar degeneration. ANN NEUROL 2012;72:859–869.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.titleMutations in KCND3 cause spinocerebellar ataxia type 22en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPsychiatryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMolecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Neurology, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Human Genetics, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Psychiatry, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumMolecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationotherDepartment of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwanen_US
dc.contributor.affiliationotherUPMC University Paris, Centre de Recherche du Cerveau et de la Moelle épinière, Hopital Pitie‐Salpetriere, Paris, Franceen_US
dc.contributor.affiliationotherDepartment of Neurology, National Yang‐Ming University School of Medicine, Taipei Veterans General Hospital, #201, Sec 2, Shipai Road, Peitou District, Taipei, Taiwan 11217.en_US
dc.contributor.affiliationotherDepartment of Neurology, National Yang‐Ming University School of Medicine, Taipei, Taiwanen_US
dc.contributor.affiliationotherBrain Research Center, National Yang‐Ming University, Taipei, Taiwanen_US
dc.contributor.affiliationotherDepartment of Neurology, Taipei Veterans General Hospital, Taipei, Taiwanen_US
dc.contributor.affiliationotherNational Institute of Health and Medical Research, U975, Paris, Franceen_US
dc.contributor.affiliationotherNational Center for Scientific Research, UMR7225, Paris, Franceen_US
dc.contributor.affiliationotherPierre and Marie Curie University Paris, Brain and Spinal Cord Research Center, Pitie‐Salpetriere Hospital, Paris, Franceen_US
dc.contributor.affiliationotherPublic Assistance Hospitals of Paris, Department of Genetics, Pitie‐Salpetriere Hospital, Paris, Franceen_US
dc.contributor.affiliationotherDepartment of Biochemistry, Faculty of Medicine, School of Medicine, National Yang‐Ming University, Taipei, Taiwanen_US
dc.contributor.affiliationotherCenter for Systems and Synthetic Biology, National Yang‐Ming University, Taipei, Taiwanen_US
dc.contributor.affiliationotherInstitute of Neuroscience, National Yang‐Ming University, Taipei, Taiwanen_US
dc.contributor.affiliationotherDepartment of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japanen_US
dc.contributor.affiliationotherFaculty of Life Sciences and Institute of Genomic Sciences, National Yang‐Ming University, Taipei, Taiwanen_US
dc.contributor.affiliationotherGenome Research Center, National Yang‐Ming University, Taipei, Taiwanen_US
dc.contributor.affiliationotherPractical School of Advanced Studies, Paris, Franceen_US
dc.identifier.pmid23280837en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95251/1/23701_ftp.pdf
dc.identifier.doi10.1002/ana.23701en_US
dc.identifier.sourceAnnals of Neurologyen_US
dc.identifier.citedreferenceImbrici P, D'Adamo MC, Kullmann DM, Pessia M. Episodic ataxia type 1 mutations in the KCNA1 gene impair the fast inactivation properties of the human potassium channels Kv1.4‐1.1/Kvbeta1.1 and Kv1.4‐1.1/Kvbeta1.2. Eur J Neurosci 2006; 24: 3073 – 3083.en_US
dc.identifier.citedreferenceRea R, Spauschus A, Eunson LH, et al. Variable K(+) channel subunit dysfunction in inherited mutations of KCNA1. J Physiol 2002; 538: 5 – 23.en_US
dc.identifier.citedreferenceEunson LH, Rea R, Zuberi SM, et al. Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability. Ann Neurol 2000; 48: 647 – 656.en_US
dc.identifier.citedreferenceD'Adamo MC, Imbrici P, Sponcichetti F, Pessia M. Mutations in the KCNA1 gene associated with episodic ataxia type‐1 syndrome impair heteromeric voltage‐gated K(+) channel function. FASEB J 1999; 13: 1335 – 1345.en_US
dc.identifier.citedreferenceD'Adamo MC, Liu Z, Adelman JP, et al. Episodic ataxia type‐1 mutations in the hKv1.1 cytoplasmic pore region alter the gating properties of the channel. EMBO J 1998; 17: 1200 – 1207.en_US
dc.identifier.citedreferenceKhalili‐Araghi F, Tajkhorshid E, Roux B, Schulten K. Molecular dynamics investigation of the omega‐current in the Kv1.2 voltage sensor domains. Biophys J 2012; 102: 258 – 267.en_US
dc.identifier.citedreferenceTombola F, Pathak MM, Gorostiza P, Isacoff EY. The twisted ion‐permeation pathway of a resting voltage‐sensing domain. Nature 2007; 445: 546 – 549.en_US
dc.identifier.citedreferenceGiudicessi JR, Ye D, Tester DJ, et al. Transient outward current (I(to)) gain‐of‐function mutations in the KCND3‐encoded Kv4.3 potassium channel and Brugada syndrome. Heart Rhythm 2011; 8: 1024 – 1032.en_US
dc.identifier.citedreferenceOberdick J, Baader SL, Schilling K. From zebra stripes to postal zones: deciphering patterns of gene expression in the cerebellum. Trends Neurosci 1998; 21: 383 – 390.en_US
dc.identifier.citedreferenceHsu YH, Huang HY, Tsaur ML. Contrasting expression of Kv4.3, an A‐type K+ channel, in migrating Purkinje cells and other post‐migratory cerebellar neurons. Eur J Neurosci 2003; 18: 601 – 612.en_US
dc.identifier.citedreferenceIsbrandt D, Leicher T, Waldschutz R, et al. Gene structures and expression profiles of three human KCND (Kv4) potassium channels mediating A‐type currents I(TO) and I(SA). Genomics 2000; 64: 144 – 154.en_US
dc.identifier.citedreferenceDilks D, Ling HP, Cockett M, et al. Cloning and expression of the human kv4.3 potassium channel. J Neurophysiol 1999; 81: 1974 – 1977.en_US
dc.identifier.citedreferenceKong W, Po S, Yamagishi T, et al. Isolation and characterization of the human gene encoding Ito: further diversity by alternative mRNA splicing. Am J Physiol 1998; 275: H1963 – H1970.en_US
dc.identifier.citedreferenceAbecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97 – 101.en_US
dc.identifier.citedreferenceKlockgether T. Update on degenerative ataxias. Curr Opin Neurol 2011; 24: 339 – 345.en_US
dc.identifier.citedreferenceSoong B ‐ W, Paulson HL. Spinocerebellar ataxias: an update. Curr Opin Neurol 2007; 20: 438 – 446.en_US
dc.identifier.citedreferenceSoong BW, LU YC, Choo KB, Lee HY. Frequency analysis of autosomal dominant ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Arch Neurol 2001; 58: 1105 – 1109.en_US
dc.identifier.citedreferenceDurr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol 2010; 9: 885 – 894.en_US
dc.identifier.citedreferenceChung MY, Lu YC, Cheng NC, Soong BW. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21‐q23. Brain 2003; 126: 1293 – 1299.en_US
dc.identifier.citedreferenceVerbeek DS, Schelhaas JH, Ippel EF, et al. Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21‐q21. Hum Genet 2002; 111: 388 – 393.en_US
dc.identifier.citedreferenceSchelhaas HJ, Verbeek DS, Van de Warrenburg BP, Sinke RJ. SCA19 and SCA22: evidence for one locus with a worldwide distribution. Brain 2004; 127: E6; author reply E7.en_US
dc.identifier.citedreferenceSchmitz‐Hubsch T, du Montcel ST, Baliko L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006; 66: 1717 – 1720.en_US
dc.identifier.citedreferenceLee YC, Liao YC, Wang PS, et al. Comparison of cerebellar ataxias: a three‐year prospective longitudinal assessment. Mov Disord 2011; 26: 2081 – 2087.en_US
dc.identifier.citedreferenceSambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2001.en_US
dc.identifier.citedreferenceTsaur ML, Chou CC, Shih YH, Wang HL. Cloning, expression and CNS distribution of Kv4.3, an A‐type K+ channel alpha subunit. FEBS Lett 1997; 400: 215 – 220.en_US
dc.identifier.citedreferenceShi G, Kleinklaus AK, Marrion NV, Trimmer JS. Properties of Kv2.1 K+ channels expressed in transfected mammalian cells. J Biol Chem 1994; 269: 23204 – 23211.en_US
dc.identifier.citedreferenceLee YC, Yu CT, Lin KP, et al. MPZ mutation G123S characterization: evidence for a complex pathogenesis in CMT disease. Neurology 2008; 70: 273 – 277.en_US
dc.identifier.citedreferenceNiwa N, Nerbonne JM. Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. J Mol Cell Cardiol 2010; 48: 12 – 25.en_US
dc.identifier.citedreferenceNorris AJ, Nerbonne JM. Molecular dissection of I(A) in cortical pyramidal neurons reveals three distinct components encoded by Kv4.2, Kv4.3, and Kv1.4 alpha‐subunits. J Neurosci 2010; 30: 5092 – 5101.en_US
dc.identifier.citedreferencePostma AV, Bezzina CR, de Vries JF, et al. Genomic organisation and chromosomal localisation of two members of the KCND ion channel family, KCND2 and KCND3. Hum Genet 2000; 106: 614 – 619.en_US
dc.identifier.citedreferenceDurbin RM, Altshuler D, Abecasis GR, et al. A map of human genome variation from population‐scale sequencing. Nature 2010; 467: 1061 – 1073.en_US
dc.identifier.citedreferencePurcell S, Neale B, Todd‐Brown K, et al. PLINK: a tool set for whole‐genome association and population‐based linkage analyses. Am J Hum Genet 2007; 81: 559 – 575.en_US
dc.identifier.citedreferenceAriano MA, Cepeda C, Calvert CR, et al. Striatal potassium channel dysfunction in Huntington's disease transgenic mice. J Neurophysiol 2005; 93: 2565 – 2574.en_US
dc.identifier.citedreferenceFigueroa KP, Waters MF, Garibyan V, et al. Frequency of KCNC3 DNA variants as causes of spinocerebellar ataxia 13 (SCA13). PLoS One 2011; 6: e17811.en_US
dc.identifier.citedreferenceWaters MF, Minassian NA, Stevanin G, et al. Mutations in voltage‐gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nat Genet 2006; 38: 447 – 451.en_US
dc.identifier.citedreferenceHarding AE. Clinical features and classification of inherited ataxias. Adv Neurol 1993; 61: 1 – 14.en_US
dc.identifier.citedreferenceBaranauskas G, Tkatch T, Surmeier DJ. Delayed rectifier currents in rat globus pallidus neurons are attributable to Kv2.1 and Kv3.1/3.2 K(+) channels. J Neurosci 1999; 19: 6394 – 6404.en_US
dc.identifier.citedreferenceShook SJ, Mamsa H, Jen JC, et al. Novel mutation in KCNA1 causes episodic ataxia with paroxysmal dyspnea. Muscle Nerve 2008; 37: 399 – 402.en_US
dc.identifier.citedreferenceAngulo E, Noe V, Casado V, et al. Up‐regulation of the Kv3.4 potassium channel subunit in early stages of Alzheimer's disease. J Neurochem 2004; 91: 547 – 557.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.