Show simple item record

Interaction of Saturn's magnetosphere and its moons: 3. Time variation of the Enceladus plume

dc.contributor.authorJia, Y.‐d.en_US
dc.contributor.authorRussell, C. T.en_US
dc.contributor.authorKhurana, K. K.en_US
dc.contributor.authorMa, Y. J.en_US
dc.contributor.authorKurth, W.en_US
dc.contributor.authorGombosi, T. I.en_US
dc.date.accessioned2013-01-03T19:43:32Z
dc.date.available2013-01-03T19:43:32Z
dc.date.issued2010-12en_US
dc.identifier.citationJia, Y.‐d. ; Russell, C. T.; Khurana, K. K.; Ma, Y. J.; Kurth, W.; Gombosi, T. I. (2010). "Interaction of Saturn's magnetosphere and its moons: 3. Time variation of the Enceladus plume." Journal of Geophysical Research: Space Physics 115(A12): n/a-n/a. <http://hdl.handle.net/2027.42/95380>en_US
dc.identifier.issn0148-0227en_US
dc.identifier.issn2156-2202en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95380
dc.publisherUniv. zu Kölnen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCassinien_US
dc.subject.otherMHDen_US
dc.subject.otherEnceladusen_US
dc.titleInteraction of Saturn's magnetosphere and its moons: 3. Time variation of the Enceladus plumeen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95380/1/jgra20677.pdf
dc.identifier.doi10.1029/2010JA015534en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferencePontius, D. H., and T. W. Hill ( 2006 ), Enceladus: A significant plasma source for Saturn's magnetosphere, J. Geophys. Res., 111, A09214, doi: 10.1029/2006JA011674.en_US
dc.identifier.citedreferenceJones, G. H., et al. ( 2009 ), Fine jet structure of electrically charged grains in Enceladus' plume, Geophys. Res. Lett., 36, L16204, doi: 10.1029/2009GL038284.en_US
dc.identifier.citedreferenceKabin, K., M. R. Combi, T. I. Gombosi, A. F. Nagy, D. L. DeZeeuw, and K. G. Powell ( 1999 ), On Europa's magnetospheric interaction: A MHD simulation of the E4 flyby, J. Geophys. Res., 104, 19,983 – 19,992, doi: 10.1029/1999JA900263.en_US
dc.identifier.citedreferenceKhurana, K. K., M. K. Dougherty, C. T. Russell, and J. S. Leisner ( 2007 ), Mass loading of Saturn's magnetosphere near Enceladus, J. Geophys. Res., 112, A08203, doi: 10.1029/2006JA012110.en_US
dc.identifier.citedreferenceKhurana, K. K., C. T. Russell, and M. K. Dougherty ( 2008 ), Magnetic portraits of Tethys and Rhea, Icarus, 193, 465 – 474, doi: 10.1016/j.icarus.2007.08.005.en_US
dc.identifier.citedreferenceKriegel, H., S. Simon, J. Muller, U. Motschmann, J. Saur, K.‐H. Glassmeier, and M. Dougherty ( 2009 ), The plasma interaction of enceladus: 3‐D hybrid simulations and comparison with cassini mag data, Planet. Space Sci., 57 ( 14–15 ), 2113 – 2122, doi: 10.1016/j.pss.2009.09.025.en_US
dc.identifier.citedreferenceKurth, W. S., A. Lecacheux, T. F. Averkamp, J. B. Groene, and Gurnett ( 2007 ), A Saturnian longitude system based on a variable kilometric radiation period, Geophys. Res. Lett., 34, L02201, doi: 10.1029/2006GL028336.en_US
dc.identifier.citedreferenceKurth, W. S., T. F. Averkamp, D. A. Gurnett, J. B. Groene, and A. Lecacheux ( 2008 ), An update to a Saturnian longitude system based on kilometric radio emissions, J. Geophys. Res., 113, A05222, doi: 10.1029/2007JA012861.en_US
dc.identifier.citedreferenceLishawa, C. R., R. A. Dressler, J. A. Gardner, R. H. Salter, and E. Murad ( 1990 ), Cross sections and product kinetic energy analysis of H2O+−H2O collisions at suprathermal energies, J. Chem. Phys., 93, 3196 – 3206, doi: 10.1063/1.458852.en_US
dc.identifier.citedreferenceNeubauer, F. M. ( 1980 ), Nonlinear standing Alfven wave current system at Io: Theory, J. Geophys. Res., 85, 1171 – 1178, doi: 10.1029/JA085iA03p01171.en_US
dc.identifier.citedreferenceNeubauer, F. M. ( 1998 ), The sub‐Alfvenic interaction of the Galilean satellites with the Jovian magnetosphere, J. Geophys. Res., 103, 19,843 – 19,866, doi: 10.1029/97JE03370.en_US
dc.identifier.citedreferenceOmidi, N., C. T. Russell, R. L. Tokar, and J. S. Leisner ( 2010 ), Hybrid simulations of the plasma environment around Enceladus, J. Geophys. Res., 115, A05212, doi: 10.1029/2009JA014391.en_US
dc.identifier.citedreferencePorco, C. C., et al. ( 2006 ), Cassini observes the active south pole of Enceladus, Science, 311, 1393 – 1401, doi: 10.1126/science.1123013.en_US
dc.identifier.citedreferenceRao, M. V. V. S., I. Iga, and S. K. Srivastava ( 1995 ), Ionization cross‐sections for the production of positive ions from H2O by electron impact, J. Geophys. Res., 100, 26,421 – 26,425, doi: 10.1029/95JE02314.en_US
dc.identifier.citedreferenceRoussos, E., et al. ( 2008 ), Plasma and fields in the wake of Rhea: 3‐D hybrid simulation and comparison with Cassini data, Ann. Geophys., 26, 619 – 637.en_US
dc.identifier.citedreferenceSaur, J., N. Schilling, F. M. Neubauer, D. F. Strobel, S. Simon, M. K. Dougherty, C. T. Russell, and R. T. Pappalardo ( 2008 ), Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations, Geophys. Res. Lett., 35, L20105, doi: 10.1029/2008GL035811.en_US
dc.identifier.citedreferenceSchunk, R. W., and A. F. Nagy ( 2000 ), Ionospheres: Physics, Plasma Physics,and Chemistry, Cambridge Univ. Press, New York.en_US
dc.identifier.citedreferenceSonett, C. P., and D. S. Colburn ( 1968 ), The principle of solar wind induced planetary dynamos, Phys. Earth Planet. Inter., 1, 326 – 346, doi: 10.1016/0031-9201(68)90027-7.en_US
dc.identifier.citedreferenceSpitale, J. N., and C. C. Porco ( 2007 ), Association of the jets of Enceladus with the warmest regions on its south‐polar fractures, Nature, 449, 695 – 697, doi: 10.1038/nature06217.en_US
dc.identifier.citedreferenceTokar, R. L., et al. ( 2006 ), The interaction of the atmosphere of Enceladus with Saturn's plasma, Science, 311, 1409 – 1412, doi: 10.1126/science.1121061.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space Weather Modeling Framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.en_US
dc.identifier.citedreferenceWilson, R. J., R. L. Tokar, and M. G. Henderson ( 2009 ), Thermal ion flow in Saturn's inner magnetosphere measured by the Cassini plasma spectrometer: A signature of the Enceladus torus? Geophys. Res. Lett., 36, L23104, doi: 10.1029/2009GL040225.en_US
dc.identifier.citedreferenceBackes, H. ( 2004 ), Titan's interaction with the Saturnian magnetospheric plasma, Ph.D. thesis, Univ. zu Köln, Cologne, Germany.en_US
dc.identifier.citedreferenceBanks, P. M., and G. Kockarts ( 1973 ), Aeronomy Part A, Academic Press, Cambridge, U. K.,en_US
dc.identifier.citedreferenceBurger, M. H., E. C. Sittler, R. E. Johnson, H. T. Smith, O. J. Tucker, and V. I. Shematovich ( 2007 ), Understanding the escape of water from Enceladus, J. Geophys. Res., 112, A06219, doi: 10.1029/2006JA012086.en_US
dc.identifier.citedreferenceCoates, A. J., G. H. Jones, G. R. Lewis, A. Wellbrock, D. T. Young, F. J. Crary, R. E. Johnson, T. A. Cassidy, and T. W. Hill ( 2010 ), Negative ions in the Enceladus plume, Icarus, 206, 618 – 622, doi: 10.1016/j.icarus.2009.07.013.en_US
dc.identifier.citedreferenceCombi, M. R., K. Kabin, T. I. Gombosi, D. L. DeZeeuw, and K. G. Powell ( 1998 ), Io's plasma environment during the Galileo flyby: Global three‐dimensional MHD modeling with adaptive mesh refinement, J. Geophys. Res., 103, 9071 – 9082, doi: 10.1029/98JA00073.en_US
dc.identifier.citedreferenceCravens, T. E., R. L. McNutt, J. H. Waite, I. P. Robertson, J. G. Luhmann, W. Kasprzak, and W. Ip ( 2009 ), Plume ionosphere of Enceladus as seen by the Cassini ion and neutral mass spectrometer, Geophys. Res. Lett., 36, L08106, doi: 10.1029/2009GL037811.en_US
dc.identifier.citedreferenceDougherty, M. K., et al. ( 2004 ), The Cassini magnetic field investigation, Space Sci. Rev., 114, 331 – 383, doi: 10.1007/s11214-004-1432-2.en_US
dc.identifier.citedreferenceDougherty, M. K., K. K. Khurana, F. M. Neubauer, C. T. Russell, J. Saur, J. S. Leisner, and M. E. Burton ( 2006 ), Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer, Science, 311, 1406 – 1409, doi: 10.1126/science.1120985.en_US
dc.identifier.citedreferenceFarrell, W. M., W. S. Kurth, D. A. Gurnett, R. E. Johnson, M. L. Kaiser, J. Wahlund, and J. H. Waite ( 2009 ), Electron density dropout near Enceladus in the context of water‐vapor and water‐ice, Geophys. Res. Lett., 36, L10203, doi: 10.1029/2008GL037108.en_US
dc.identifier.citedreferenceFleshman, B. L., P. A. Delamere, and F. Bagenal ( 2010 ), Modeling the Enceladus plume‐plasma interaction, Geophys. Res. Lett., 37, L03202, doi: 10.1029/2009GL041613.en_US
dc.identifier.citedreferenceGurnett, D. A., A. M. Persoon, W. S. Kurth, J. B. Groene, T. F. Averkamp, M. K. Dougherty, and D. J. Southwood ( 2007 ), The variable rotation period of the inner region of Saturn's plasma disk, Science, 316, 442 – 445, doi: 10.1126/science.1138562.en_US
dc.identifier.citedreferenceHansen, C. J., L. Esposito, A. I. F. Stewart, J. Colwell, A. Hendrix, W. Pryor, D. Shemansky, and R. West ( 2006 ), Enceladus' water vapor plume, Science, 311, 1422 – 1425, doi: 10.1126/science.1121254.en_US
dc.identifier.citedreferenceItikawa, Y. ( 2005 ), Cross sections for electron collisions with water molecules, J. Phys. Chem. Ref. Data, 34 ( 1 ), doi: 10.1063/1.1799251.en_US
dc.identifier.citedreferenceJia, Y. D., M. R. Combi, K. C. Hansen, T. I. Gombosi, F. J. Crary, and D. T. Young ( 2008 ), A 3‐D global MHD model for the effect of neutral jets during the Deep Space 1 Comet 19P/Borrelly flyby, Icarus, 196, 249 – 257, doi: 10.1016/j.icarus.2008.03.010.en_US
dc.identifier.citedreferenceJia, Y., C. T. Russell, K. K. Khurana, J. S. Leisner, Y. J. Ma, and M. K. Dougherty ( 2010 a), Time‐varying magnetospheric environment near Enceladus as seen by the Cassini magnetometer, Geophys. Res. Lett., 37, L09203, doi: 10.1029/2010GL042948.en_US
dc.identifier.citedreferenceJia, Y., C. T. Russell, K. K. Khurana, G. Toth, J. S. Leisner, and T. I. Gombosi ( 2010 b), Interaction of Saturn's magnetosphere and its moons: 1. Interaction between corotating plasma and standard obstacles, J. Geophys. Res., 115, A04214, doi: 10.1029/2009JA014630.en_US
dc.identifier.citedreferenceJia, Y., C. T. Russell, K. K. Khurana, Y. J. Ma, D. Najib, and T. I. Gombosi ( 2010 c), Interaction of Saturn's magnetosphere and its moons: 2. Shape of the Enceladus plume, J. Geophys. Res., 115, A04215, doi: 10.1029/2009JA014873.en_US
dc.identifier.citedreferenceJones, G. H., E. Roussos, N. Krupp, C. Paranicas, J. Woch, A. Lagg, D. G. Mitchell, S. M. Krimigis, and M. K. Dougherty ( 2006 ), Enceladus' varying imprint on the magnetosphere of Saturn, Science, 311, 1412 – 1415, doi: 10.1126/science.1121011.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.