Show simple item record

Seismic and mineralogical structures of the lower mantle from probabilistic tomography

dc.contributor.authorMosca, I.en_US
dc.contributor.authorCobden, L.en_US
dc.contributor.authorDeuss, A.en_US
dc.contributor.authorRitsema, J.en_US
dc.contributor.authorTrampert, J.en_US
dc.date.accessioned2013-01-03T19:43:44Z
dc.date.available2013-08-01T14:04:41Zen_US
dc.date.issued2012-06en_US
dc.identifier.citationMosca, I.; Cobden, L.; Deuss, A.; Ritsema, J.; Trampert, J. (2012). "Seismic and mineralogical structures of the lower mantle from probabilistic tomography." Journal of Geophysical Research: Solid Earth 117(B6): n/a-n/a. <http://hdl.handle.net/2027.42/95386>en_US
dc.identifier.issn0148-0227en_US
dc.identifier.issn2156-2202en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95386
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherPrinceton Univ. Pressen_US
dc.subject.otherThemo‐Chemical Anomaliesen_US
dc.subject.otherSeismic Wave‐Speeden_US
dc.subject.otherSeismic Tomographyen_US
dc.subject.otherLower Mantleen_US
dc.subject.otherDensityen_US
dc.titleSeismic and mineralogical structures of the lower mantle from probabilistic tomographyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherDepartment of Earth Sciences, University of Cambridge, Cambridge, UKen_US
dc.contributor.affiliationotherNow at Institut für Geophysik, Westfalische-Wilhelms-University, Münster, Germanyen_US
dc.contributor.affiliationotherNow at Department of Earth and Environmental Sciences, Ludwig-Maximilians-University, Munich, Germanyen_US
dc.contributor.affiliationotherDepartment of Earth Sciences, Utrecht University, Utrecht, Netherlandsen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95386/1/jgrb17106.pdf
dc.identifier.doi10.1029/2011JB008851en_US
dc.identifier.sourceJournal of Geophysical Research: Solid Earthen_US
dc.identifier.citedreferenceSambridge, M. ( 1999 a), Geophysical inversion with a Neighborhood Algorithms I: Searching a parameter space, Geophys. J. Int., 138, 479 – 494.en_US
dc.identifier.citedreferenceSambridge, M. ( 1999 b), Geophysical inversion with a Neighborhood Algorithms II: Appraising the ensemble, Geophys. J. Int., 138, 727 – 746.en_US
dc.identifier.citedreferenceSimmons, N. A., A. M. Forte, and S. P. Grand ( 2009 ), Joint seismic, geodynamic and mineral physical constraints on three‐dimensional mantle heterogeneity: Implications for the relative importance of thermal versus compositional heterogeneity, Geophys. J. Int., 177, 1284 – 1304.en_US
dc.identifier.citedreferenceSimmons, N. A., A. M. Forte, L. Boschi, and S. P. Grand ( 2010 ), GyPSuM: A joint tomographic model of mantle density and seismic wave speeds, J. Geophys. Res., 115, B12310, doi: 10.1029/2010JB007631.en_US
dc.identifier.citedreferenceSteinberger, B., and A. Calderwood ( 2006 ), Models of large‐scale viscous flow in the Earth's mantle with constraints from mineral physics and surface observations, Geophys. J. Int., 167, 1461 – 1481.en_US
dc.identifier.citedreferenceStixrude, L., and C. Lithgow‐Bertelloni ( 2005 ), Thermodynamics of mantle minerals I: Physical properties, Geophys. J. Int., 162, 610 – 632.en_US
dc.identifier.citedreferenceStixrude, L., and C. Lithgow‐Bertelloni ( 2011 ), Thermodynamics of mantle minerals II: Phase equlibria, Geophys. J. Int., 184, 1180 – 1213.en_US
dc.identifier.citedreferenceSu, W.‐J., and A. M. Dziewonski ( 1997 ), Simultaneous inversion for 3D variations in shear and bulk velocity in the mantle, Phys. Earth Planet. Inter., 100, 135 – 156.en_US
dc.identifier.citedreferenceTanaka, S. ( 2002 ), Very low shear wave velocity at the base of the mantle under the South Pacific superswell, Earth Planet. Sci. Lett., 203, 879 – 893.en_US
dc.identifier.citedreferenceTarantola, A. ( 1987 ), Inverse Problem Theory, Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceToh, A., B. Romanowicz, Y. Capdeville, and N. Takeuchi ( 2005 ), 3‐D effects of sharp boundaries at the borders of the African and Pacific super‐plumes: Observations and modeling, Earth Planet. Sci. Lett., 233, 237 – 253.en_US
dc.identifier.citedreferenceTrampert, J., and R. D. van der Hilst ( 2005 ), Toward a quantitative interpretation of global seismic tomography, in Earth's Deep Mantle: Structure, Composition, and Evolution, Geophys. Monogr. Ser., vol. 160, edited by R. D. van der Hilst et al., pp. 47 – 62, AGU, Washington, D. C., doi: 10.1029/160GM05.en_US
dc.identifier.citedreferenceTrampert, J., P. Vacher, and N. Vlaar ( 2001 ), Sensitivities on seismic velocities to temperature, pressure and composition in the lower mantle, Phys. Earth Planet. Inter., 124, 255 – 267.en_US
dc.identifier.citedreferenceTrampert, J., F. Deschamps, J. S. Resovsky, and D. Yuen ( 2004 ), Probabilistic tomography maps significant chemical heterogeneities in the lower mantle, Science, 306, 853 – 856.en_US
dc.identifier.citedreferenceTsuchiya, T., R. Caracas, and J. Tsuchiya ( 2004 a), First principles determination of the phase boundaries of high‐pressure polymorphs of silica, Geophys. Res. Lett., 31, L11610, doi: 10.1029/2004GL019649.en_US
dc.identifier.citedreferenceTsuchiya, T., K. Tsuchiya, and K. Umemoto ( 2004 b), Phase transition in MgSiO 3 perovskite in the Earth's lower mantle, Earth Planet. Sci. Lett., 224, 241 – 248.en_US
dc.identifier.citedreferenceTsuchiya, T., K. Tsuchiya, and K. Umemoto ( 2004 c), Elasticity of post‐perovskite MgSiO 3, Geophys. Res. Lett., 31, L14603, doi: 10.1029/2004GL020278.en_US
dc.identifier.citedreferencevan der Hilst, R. D., S. Widiyantoro, and E. Engdahl ( 1997 ), Evidence for deep mantle circulation from global tomography, Nature, 386, 578 – 584.en_US
dc.identifier.citedreferencevan der Hilst, R. D., M. V. D. Hoop, P. Wang, S.‐M. Shim, P. Ma, and L. Tenorio ( 2007 ), Seismostratigraphy and thermal structure of Earth's core‐matle boundary region, Science, 315, 1813 – 1817.en_US
dc.identifier.citedreferenceVasco, D. W., and L. R. Johnson ( 1998 ), Whole Earth structure estimated from seismic arrival times, J. Geophys. Res., 103, 2633 – 2671.en_US
dc.identifier.citedreferenceVinnik, L., L. Breger, and B. Romanowicz ( 1998 ), Anisotropic structures at the base of the mantle, Nature, 393, 564 – 567.en_US
dc.identifier.citedreferenceVisser, K., J. Trampert, and B. L. N. Kennett ( 2008 ), Global anisotropic phase velocity maps for higher mode Love and Rayleigh waves, Geophys. J. Int., 172, 1016 – 1032.en_US
dc.identifier.citedreferenceWentzcovitch, R. M., T. Tsuchiya, and K. Tsuchiya ( 2006 ), MgSiO 3 post‐perovskite at D″ conditions, Proc. Natl. Acad. Sci U.S.A., 103, 504 – 546.en_US
dc.identifier.citedreferenceWilliams, Q. ( 1998 ), The temperature constrast across D″, in The Core‐Mante Boundary Region, Geodyn. Ser., vol. 28, edited by M. Gurnis et al., pp. 73 – 81, AGU, Washington, D. C., doi: 10.1029/GD028p0073.en_US
dc.identifier.citedreferenceWoodhouse, J. H. ( 1974 ), Surface waves in a laterally varying layered structure, Geophys. J. R. Astron. Soc., 37, 461 – 490.en_US
dc.identifier.citedreferenceWoodhouse, J. H., and Y. K. Wong ( 1986 ), Amplitude, phase and path anomalies of mantle waves, Geophys. J. R. Astron. Soc., 87, 753 – 773.en_US
dc.identifier.citedreferenceXu, W., C. Lithgow‐Bertelloni, L. Stixrude, and J. Ritsema ( 2008 ), The effect of bulk composition and temperature on mantle seismic structure, Earth Planet. Sci. Lett., 275, 70 – 79.en_US
dc.identifier.citedreferenceYoshizawa, K., and B. L. Kennett ( 2002 ), Determination of the influence zone for surface wave paths, Geophys. J. Int., 149, 440 – 453.en_US
dc.identifier.citedreferenceZhao, D. ( 2001 ), Seismic structure and origin of hot spots and mantle plumes, Earth Planet. Sci. Lett., 192, 251 – 265.en_US
dc.identifier.citedreferenceAnderson, O., E. Schreiber, R. Liebermann, and N. Soga ( 1984 ), Some elastic constant data on minerals relevant to geophysics, J. Geophys. Res., 89, 5953 – 5986.en_US
dc.identifier.citedreferenceAntolik, M., Y. J. Gu, and G. Ekstrom ( 2003 ), A new joint model of compressional and shear velocity in the Earth's mantle, Geophys. J. Int., 153, 443 – 466.en_US
dc.identifier.citedreferenceBecker, T. W., and L. Boschi ( 2002 ), A comparison of tomographic and geodynamic mantle models, Geochem. Geophys. Geosyst., 3 ( 1 ), 1003, doi: 10.1029/2001GC000168.en_US
dc.identifier.citedreferenceBeghein, C., J. S. Resovsky, and J. Trampert ( 2002 ), P and S tomography using normal mode and surface wave data with a Neighborhood Algorithm, Geophys. J. Int., 149, 646 – 658.en_US
dc.identifier.citedreferenceBijwaard, H., W. Spakman, and E. Engdahl ( 1998 ), Closing the gap between regional and global travel‐time tomography, J. Geophys. Res., 103, 30,055 – 30,078.en_US
dc.identifier.citedreferenceBoschi, L., and A. M. Dziewonski ( 2000 ), Whole Earth tomography from delay times of P, PcP, and PKP phases: Lateral heterogeneities in the outer core or radial anisotropy in the mantle?, J. Geophys. Res., 105, 13,675 – 13,696.en_US
dc.identifier.citedreferenceBozdag, E., and J. Trampert ( 2008 ), On crustal corrections in surface wave tomography, Geophys. J. Int., 172, 1066 – 1082.en_US
dc.identifier.citedreferenceBreger, L., and B. Romanowicz ( 1998 ), Thermal and chemical 3D heterogeneity in D″, Science, 282, 718 – 720.en_US
dc.identifier.citedreferenceBull, A. L., A. K. McNamara, and J. Ritsema ( 2009 ), Synthetic tomography of plume clusters and thermo‐chemical piles, Earth Planet. Sci. Lett., 278, 152 – 162.en_US
dc.identifier.citedreferenceBullen, K. E. ( 1949 ), Compressibility‐pressure hypothesis and the Earth's interior, Geophys. J. Int., 5, 355 – 368.en_US
dc.identifier.citedreferenceCadek, O., and L. Fleitout ( 1999 ), A global geoid model with imposed plate velocities and partial layering, J. Geophys. Res., 104, 29,055 – 29,075.en_US
dc.identifier.citedreferenceCobden, L., S. Goes, M. Ravenna, E. Styles, F. Cammarano, K. Gallagher, and J. A. Connolly ( 2009 ), Thermo‐chemical interpretation of 1‐D seismic data for the lower mantle: The significance of non‐adiabatic thermal gradients and compositional heterogeneity, J. Geophys. Res., 114, B11309, doi: 10.1029/2008JB006262.en_US
dc.identifier.citedreferenceCurtis, A., and A. Lomax ( 2001 ), Prior information, sampling distributions and the curse of dimensionality, Geophysics, 66, 372 – 378.en_US
dc.identifier.citedreferenceDahlen, F. A., and J. Tromp ( 1998 ), Theoretical Global Seismology, Princeton Univ. Press, Princeton, N. J.en_US
dc.identifier.citedreferenceDeschamps, F., and P. J. Tackley ( 2008 ), Searching for models of thermo‐chemical convection that explain probabilistic tomography ‐ I. Principles and influence of rheological parameters, Phys. Earth Planet. Inter., 171, 357 – 373.en_US
dc.identifier.citedreferenceDeschamps, F., and P. J. Tackley ( 2009 ), Searching for models of thermo‐chemical convection that explain probabilistic tomography ‐ II. Influence of physical and compositional parameters, Phys. Earth Planet. Inter., 176, 1 – 18.en_US
dc.identifier.citedreferenceDeschamps, F., and J. Trampert ( 2003 ), Mantle tomography and its relation to temperature and composition, Phys. Earth Planet. Inter., 140, 277 – 291.en_US
dc.identifier.citedreferenceDeschamps, F., and J. Trampert ( 2004 ), Toward a lower mantle reference temperature and composition, Earth Planet. Sci. Lett., 222, 161 – 175.en_US
dc.identifier.citedreferenceDeschamps, F., J. Trampert, and P. J. Tackley ( 2007 ), Thermo‐chemical structure of the lower mantle: Seismological evidence and consequences for geodynamics, in Superplumes: Beyond Plate Tectonics, pp. 293 – 320, Springer, Dordrecht, Netherlands.en_US
dc.identifier.citedreferenceDeuss, A., J. Ritsema, and H. J. van Heijst ( 2011 ), Splitting function measurements for Earth's longest period normal‐modes using recent earthquakes, Geophys. Res. Lett., 38, L04303, doi: 10.1029/2010GL046115.en_US
dc.identifier.citedreferencede Wit, R. W., J. Trampert, and R. D. van der Hilst ( 2012 ), Toward quantifying uncertainties in travel‐time tomography using the null‐space shuttle, J. Geophys. Res., 117, B03301, doi: 10.1029/2011JB008754.en_US
dc.identifier.citedreferenceDziewonski, A. M., and D. L. Anderson ( 1981 ), Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297 – 356.en_US
dc.identifier.citedreferenceFord, S. R., E. G. Garnero, and A. K. McNamara ( 2006 ), A strong lateral shear velocity gradient and anisotropy heterogeneity in the lowermost mantle beneath the southern Pacific, J. Geophys. Res., 111, B03306, doi: 10.1029/2004JB003574.en_US
dc.identifier.citedreferenceForte, A. M., and J. X. Mitrovica ( 2001 ), Deep‐mantle high‐viscosity flow and thermo‐chemical structure inferred from seismic and geodynamic data, Nature, 410, 1049 – 1056.en_US
dc.identifier.citedreferenceForte, A. M., R. L. Woodward, and A. M. Dziewonski ( 1994 ), Joint inversions of seismic and geodynamic data for models of three‐dimensional mantle heteroneity, Geophys. J. Res., 99, 21,857 – 21,877.en_US
dc.identifier.citedreferenceFukao, Y., S. Widiyantoro, and M. Obayashi ( 2001 ), Stagnat slabs in the upper and lower mantle transition region, Rev. Geophys., 39, 291 – 323.en_US
dc.identifier.citedreferenceGarnero, E. G., and A. K. McNamara ( 2008 ), Structure and dynamics of Earth's lower mantle, Science, 320, 626 – 628.en_US
dc.identifier.citedreferenceGrand, S. P. ( 2002 ), Mantle shear wave tomography and the fate of subducted slabs, Philos. Trans. R. Soc. A, 360, 2475 – 2491.en_US
dc.identifier.citedreferenceGu, Y. J., A. M. Dziewonski, and G. Ekstrom ( 2001 ), Models of the mantle shear wave velocity and discontinuities in the pattern of lateral heterogeneities, J. Geophys. Res., 106, 11,169 – 11,199.en_US
dc.identifier.citedreferenceHe, Y., L. Wen, and T. Zheng ( 2006 ), Geographic boundary and shear wave velocity structure of the Pacific anomaly near the core‐mantle boundary beneath western Pacific, Earth Planet. Sci. Lett., 244, 302 – 314.en_US
dc.identifier.citedreferenceIrifune, T., and T. Tsuchiya ( 2007 ), Mineralogy of the Earth: Phase transitions and mineralogy of the lower mantle, in Treatise on Geophysics, vol. 2, Mineral Physics, pp. 33 – 62, Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceIrifune, T., T. Shinmei, C. A. McCammon, N. Miyajima, D. C. Rubie, and D. J. Frost ( 2010 ), Iron partitioning and density changes of pyrolite in Earth's lower mantle, Science, 327, 193 – 195.en_US
dc.identifier.citedreferenceIshii, M., and J. Tromp ( 1999 ), Normal‐mode and free‐air gravity constraints on lateral variations in velocity and density of the Earth's mantle, Science, 285, 1231 – 1236.en_US
dc.identifier.citedreferenceKarason, H., and R. D. van der Hilst ( 2001 ), Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases (PKP, P diff ), J. Geophys. Res., 106, 6569 – 6587.en_US
dc.identifier.citedreferenceKarato, S.‐I., and B. B. Karki ( 2001 ), Origin of lateral variation of seismic wave velocities and density in the deep mantle, Geophys. J. Res., 106, 21,771 – 21,783.en_US
dc.identifier.citedreferenceKawai, K., and T. Tsuchiya ( 2009 ), Temperature profile in the lowermost mantle from seismological and mineral physics joint modeling, Proc. Natl. Acad. Sci. U. S. A., 106, 22,119 – 22,123.en_US
dc.identifier.citedreferenceKellogg, L. H., B. H. Hager, and R. D. van der Hilst ( 1999 ), Compositional stratification in the deep mantle, Science, 283, 1881 – 1884.en_US
dc.identifier.citedreferenceKendall, J. M., and P. G. Silver ( 1996 ), Constraints on seismic anisotropy on the nature of the lowermost mantle, Nature, 381, 409 – 412.en_US
dc.identifier.citedreferenceKennett, B. L., E. Engdahl, and R. Buland ( 1995 ), Constraints on seismic velocities in the Earth from travel‐times, Geophys. J. Int., 150, 37 – 44.en_US
dc.identifier.citedreferenceKennett, B. L., S. Widiyantoro, and R. D. van der Hilst ( 1998 ), Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle, J. Geophys. Res., 103, 12,469 – 12,493.en_US
dc.identifier.citedreferenceLay, T. ( 2007 ), Deep Earth structure: Lower mantle and D″, in Treatise on Geophysics, vol. 1, Seismology and Structure of the Earth, pp. 619 – 654, Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceMasters, G., G. Laske, H. Bolton, and A. M. Dziewonski ( 2000 ), The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure, in Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, Geophys. Monogr. Ser., vol. 117, edited by S. Karato et al., pp. 63 – 87, AGU, Washington, D. C., doi: 10.1029/GM117p0063.en_US
dc.identifier.citedreferenceMegnin, C., and B. Romanowicz ( 2000 ), The 3D shear velocity structure of the mantle from the inversion of body, surface and higher mode waveforms, Geophys. J. Int., 143, 709 – 728.en_US
dc.identifier.citedreferenceMetropolis, N., A. W. Rosenbluth, M. N. Teller, and E. Teller ( 1953 ), Equation of state calculations by fast computing machines, J. Chem. Phys., 1, 1087 – 1092.en_US
dc.identifier.citedreferenceMooney, W., G. Laske, and G. Masters ( 1998 ), Crust5.1: A global crustal model at 5° × 55°, J. Geophys. Res., 103, 727 – 747.en_US
dc.identifier.citedreferenceMosca, I. ( 2010 ), Probabilistic tomography using body wave, normal‐mode and surface wave data, PhD thesis, Utrecht Univ., Utrecht, Netherlands.en_US
dc.identifier.citedreferenceMosca, I., and J. Trampert ( 2009 ), Path‐average kernels for long wavelength travel‐time tomography, Geophys. J. Int., 177, 639 – 650.en_US
dc.identifier.citedreferenceMosegaard, K., and A. Tarantola ( 1995 ), Monte Carlo sampling of solutions to inverse problems, J. Geophys. Res., 100 ( B7 ), 12,431 – 12,447.en_US
dc.identifier.citedreferenceMurakami, M., K. Hirose, S. Ono, and Y. Ohishi ( 2003 ), Stability of CaCl 2 ‐type and PbO 2 ‐type SiO 2 at high pressure and temperature determined by in‐situ X‐ray measurements, Geophys. Res. Lett., 30 ( 5 ), 1207, doi: 10.1029/2002GL016722.en_US
dc.identifier.citedreferenceMurakami, M., K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi ( 2004 ), Post‐perovskite phase transition in MgSiO 3, Science, 304, 855 – 858.en_US
dc.identifier.citedreferenceNakagawa, T., and P. J. Tackley ( 2004 ), Thermo‐chemical structure in the mantle arising from a three‐component convective system and implications for geochemistry, Phys. Earth Planet. Inter., 146, 125 – 138.en_US
dc.identifier.citedreferenceNaryginaa, O., L. S. Dubrovinsky, H. Samuel, C. A. McCammona, I. Kantor, K. Glazyrina, S. Pascarelli, G. Aquilanti, and V. B. Prakapenkac ( 2011 ), Chemically homogeneous spin transition zone in Earth's lower mantle, Phys. Earth Planet. Inter., 185, 107 – 111.en_US
dc.identifier.citedreferenceNi, S., and D. V. Helmberger ( 2003 a), Seismological constraints on the South African super‐plume could be the oldest distinct structure of the Earth, Earth Planet. Sci. Lett., 206, 119 – 131.en_US
dc.identifier.citedreferenceNi, S., and D. V. Helmberger ( 2003 b), Ridge‐like lower mantle structure beneath South Africa, J. Geophys. Res., 108 ( B2 ), 2094, doi: 10.1029/2001JB001545.en_US
dc.identifier.citedreferenceOganov, A. R., and S. Ono ( 2004 ), Theoretical and experimental evidence for a post‐perovskite phase transition of MgSiO 3 in Earth's D″ layer, Nature, 430, 445 – 448.en_US
dc.identifier.citedreferenceOhta, K., K. Hirose, T. Lay, N. Sata, and Y. Ohishi ( 2008 ), Phase transition in pyrolite and MORB at lowermost mantle conditions: Implications for a MORB‐rich pile above the core‐mantle boundary, Earth Planet. Sci. Lett., 267, 107 – 117.en_US
dc.identifier.citedreferencePanning, M. P., and B. Romanowicz ( 2004 ), Inferences of flow at the base of the Earth's mantle based on seimic anisotropy, Science, 303, 351 – 353.en_US
dc.identifier.citedreferenceResovsky, J. S., and M. H. Ritzwoller ( 1998 ), New and refined constraints on three‐dimensional Earth structure from normal modes below 3 mHz, J. Geophys. Res., 103, 783 – 810.en_US
dc.identifier.citedreferenceResovsky, J. S., and J. Trampert ( 2003 ), Using probabilistic seismic tomography to test mantle velocity‐density relationships, Earth Planet. Sci. Lett., 215, 121 – 134.en_US
dc.identifier.citedreferenceRickwood, P., and M. Sambridge ( 2006 ), Efficient parallel version using the Neighborhood Algorithm, Geochem. Geophys. Geosyst., 7, Q11001, doi: 10.1029/2006GC001246.en_US
dc.identifier.citedreferenceRitsema, J., and H. J. van Heijst ( 2002 ), Constraints on the correlation of P‐ and S‐wave velocity heterogeneity in the mantle from P, PP, PPP and PKPab traveltimes, Geophys. J. Int., 149, 482 – 489.en_US
dc.identifier.citedreferenceRitsema, J., S. Ni, D. V. Helmberger, and P. Crotwell ( 1998 ), Evidence for strong shear velocity reductions and velocity gradients in the lower mantle beneath Africa, Geophys. Res. Lett., 25, 4245 – 4248.en_US
dc.identifier.citedreferenceRitsema, J., H. J. van Heijst, and J. H. Woodhouse ( 1999 ), Complex shear wave velocity structure imaged beneath Africa and Iceland, Science, 286, 1925 – 1928.en_US
dc.identifier.citedreferenceRitsema, J., H. J. van Heijst, and J. H. Woodhouse ( 2004 ), Global transition zone tomography, J. Geophys. Res., 109, B02302, doi: 10.1029/2003JB002610.en_US
dc.identifier.citedreferenceRitsema, J., H. J. van Heijst, J. H. Woodhouse, and A. Deuss ( 2009 ), Long‐period body wave travel‐times through the crust: Implication for crustal corrections and seismic tomography, Geophys. J. Int., 179, 1255 – 1261.en_US
dc.identifier.citedreferenceRitsema, J., A. Deuss, and H. J. van Heijst ( 2011 ), S40RTS: A degree‐40 shear‐velocity model for the mantle from new Rayleigh wave dispersion, teleseismic travel‐time and normal‐mode splitting function measurements, Geophys. J. Int., 184, 1223 – 1236.en_US
dc.identifier.citedreferenceRobertson, G. S., and J. H. Woodhouse ( 1996 ), Ratio of the relative S to P velocity heterogeneity in the lower mantle, J. Geophys. Res., 101, 20,041 – 20,052.en_US
dc.identifier.citedreferenceRomanowicz, B. ( 2001 ), Can we resolve 3D density heterogeneity in the lower mantle?, Geophys. Res. Lett., 28, 1107 – 1110.en_US
dc.identifier.citedreferenceRomanowicz, B. ( 2003 ), Global mantle tomography: Progress status in the past 10 years, Annu. Rev. Earth Planet. Sci., 31, 303 – 328.en_US
dc.identifier.citedreferenceRomanowicz, B., and Y. Gung ( 2002 ), Superplumes from the core‐mantle boundary to the lithosphere: Implications for the heat flux, Science, 296, 513 – 516.en_US
dc.identifier.citedreferenceSaltzer, R. L., R. D. van der Hilst, and H. Karason ( 2001 ), Comparing P and S wave heterogeneity in the mantle, Geophys. Res. Lett, 28, 1335 – 1338.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.