Show simple item record

Importance of capturing heliospheric variability for studies of thermospheric vertical winds

dc.contributor.authorYiğit, Erdalen_US
dc.contributor.authorRidley, Aaron J.en_US
dc.contributor.authorMoldwin, Mark B.en_US
dc.date.accessioned2013-01-03T19:44:10Z
dc.date.available2013-09-03T15:38:28Zen_US
dc.date.issued2012-07en_US
dc.identifier.citationYiğit, Erdal ; Ridley, Aaron J.; Moldwin, Mark B. (2012). "Importance of capturing heliospheric variability for studies of thermospheric vertical winds." Journal of Geophysical Research: Space Physics 117(A7): n/a-n/a. <http://hdl.handle.net/2027.42/95431>en_US
dc.identifier.issn0148-0227en_US
dc.identifier.issn2156-2202en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95431
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherVertical Wind Variabilityen_US
dc.subject.otherMagnetosphere‐Ionosphere‐Thermosphere Couplingen_US
dc.subject.otherGravity Wavesen_US
dc.subject.otherJoule Heatingen_US
dc.subject.otherInterplanetary Magnetic Fielden_US
dc.subject.otherNonhydrostatic General Circulation Modelen_US
dc.titleImportance of capturing heliospheric variability for studies of thermospheric vertical windsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Atmosphere, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherSpace Sciences Laboratory, University of California, Berkeley, California, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95431/1/jgra21925.pdf
dc.identifier.doi10.1029/2012JA017596en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceRidley, A. J., Y. Deng, and G. Tóth ( 2006 ), The global ionosphere–thermosphere model, J. Atmos. Sol. Terr. Phys., 68, 839 – 864.en_US
dc.identifier.citedreferenceMatsuo, T., and A. D. Richmond ( 2008 ), Effects of high‐latitude ionospheric electric field variability on global thermospheric Joule heating and mechanical energy transfer rate, J. Geophys. Res., 113, A07309, doi: 10.1029/2007JA012993.en_US
dc.identifier.citedreferenceMatsuo, T., A. D. Richmond, and K. Hensel ( 2003 ), High‐latitude ionospheric electric field variability and electric potential derived from DE‐2 plasma drift measurements: Dependence on IMF and dipole tilt, J. Geophys. Res., 108 ( A1 ), 1005, doi: 10.1029/2002JA009429.en_US
dc.identifier.citedreferencePrice, G. D., R. W. Smith, and G. Hernandez ( 1995 ), Simultaneous measurements of large vertical winds in the upper and lower thermosphere, J. Atmos. Terr. Phys., 57, 631 – 643.en_US
dc.identifier.citedreferenceRees, D., R. W. Smith, P. J. Charleton, F. G. McCormac, N. Lloyd, and A. Kesteen ( 1984 a), The generation of vertical thermospheric winds and gravity waves at auroral latitudes‐I. observations of vertical winds, Planet. Space Sci., 32, 667 – 684.en_US
dc.identifier.citedreferenceRees, D., R. W. Smith, and R. Gordon ( 1984 b), The generation of vertical thermospheric winds and gravity waves at auroral latitudes‐II. theory and numerical modelling of vertical winds, Planet. Space Sci., 32, 685 – 705.en_US
dc.identifier.citedreferenceRichmond, A. D., E. C. Ridley, and R. G. Roble ( 1992 ), A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett., 19, 601 – 604.en_US
dc.identifier.citedreferenceRidley, A. J., and C. R. Clauer ( 1996 ), Characterization of the dynamic variations of the dayside high‐latitude ionospheric convection reversal boundary and relationship to interplanetary magnetic field orientation, J. Geophys. Res., 101 ( A5 ), 10,919 – 10,938.en_US
dc.identifier.citedreferenceRidley, A. J., D. L. D. Zeeuw, T. I. Gombosi, and K. Powell ( 2001 ), Using steady‐state mhd results to predict the global state of the magnetosphere‐ionosphere system, J. Geophys. Res., 106, 30,067 – 30,076.en_US
dc.identifier.citedreferenceRoble, R. G., E. C. Ridley, and A. D. Richmond ( 1988 ), A coupled thermosphere/ionosphere general circulation model, Geophys. Res. Lett., 15 ( 12 ), 1325 – 1328.en_US
dc.identifier.citedreferenceRodger, A. S., G. D. Wells, R. J. Moffett, and G. J. Bailey ( 2001 ), The variability of joule heating, and its effects on the ionosphere and thermosphere, Ann. Geophys., 19, 773 – 781.en_US
dc.identifier.citedreferenceSmith, R. W., and G. Hernandez ( 1995 ), Vertical winds in the thermosphere within the polar cap, J. Atmos. Terr. Phys., 57, 611 – 620.en_US
dc.identifier.citedreferenceSpencer, N. W., R. F. Theis, L. E. Wharton, and G. R. Carignan ( 1976 ), Local vertical motions and kinetic temperature from AE‐C as evidence for aurora‐induced gravity waves, Geophys. Res. Lett., 3, 313 – 316.en_US
dc.identifier.citedreferenceWang, W., T. L. Killeen, A. G. Burns, and R. G. Roble ( 1999 ), A high‐resolution, three‐dimensional, time‐dependent, nested grid model of the coupled thermosphere‐ionosphere, J. Atmos. Sol. Terr. Phys., 61, 385 – 397.en_US
dc.identifier.citedreferenceWardill, P., and F. Jacka ( 1986 ), Vertical motions in the thermosphere over Mawson, Antarctica, J. Atmos. Terr. Phys., 48, 289 – 292.en_US
dc.identifier.citedreferenceWeimer, D. ( 1996 ), A flexible, IMF dependent model of high‐latitude electric potentials having space weather application, Geophys. Res. Lett., 23, 2549 – 2552.en_US
dc.identifier.citedreferenceWeimer, D. R., D. M. Ober, N. C. Maynard, W. J. Burke, M. R. Collier, D. J. McComas, N. F. Ness, and C. W. Smith ( 2002 ), Variable time delays in the propagation of the interplanetary magnetic field, J. Geophys. Res., 107 ( A8 ), 1210, doi: 10.1029/2001JA009102.en_US
dc.identifier.citedreferenceYiğit, E., and A. S. Medvedev ( 2010 ), Internal gravity waves in the thermosphere during low and high solar activity: Simulation study, J. Geophys. Res., 115, A00G02, doi: 10.1029/2009JA015106.en_US
dc.identifier.citedreferenceYiğit, E., and A. J. Ridley ( 2011 a), Role of variability in determining the vertical wind speeds and structure, J. Geophys. Res., 116, A12305, doi: 10.1029/2011JA016714.en_US
dc.identifier.citedreferenceYiğit, E., and A. J. Ridley ( 2011 b), Effects of high‐latitude thermosphere heating at various scale sizes simulated by a nonhydrostatic global thermosphere‐ionosphere model, J. Atmos. Sol. Terr. Phys., 73, 592 – 600, doi: 10.1016/j.jastp.2010.12.003.en_US
dc.identifier.citedreferenceYiğit, E., A. S. Medvedev, A. D. Aylward, P. Hartogh, and M. J. Harris ( 2009 ), Modeling the effects of gravity wave momentum deposition on the general circulation above the turbopause, J. Geophys. Res., 114, D07101, doi: 10.1029/2008JD011132.en_US
dc.identifier.citedreferenceYiğit, E., A. S. Medvedev, A. D. Aylward, A. J. Ridley, M. J. Harris, M. B. Moldwin, and P. Hartogh ( 2012 ), Dynamical effects of internal gravity waves in the equinoctial thermosphere, J. Atmos. Sol. Terr. Phys., doi: 10.1016/j.jastp.2011.11.014, in press.en_US
dc.identifier.citedreferenceZink, F., and R. A. Vincent ( 2001 ), Wavelet analysis of stratospheric gravity wave packets over macquuarie island: 1. Wave parameters, J. Geophys. Res., 106 ( D10 ), 10,275 – 10,288.en_US
dc.identifier.citedreferenceAnderson, C., T. Davies, M. Conde, P. Dyson, and M. J. Kosch ( 2011 ), Spatial sampling of the thermospheric vertical wind field at auroral latitudes, J. Geophys. Res., 116, A06320, doi: 10.1029/2011JA016485.en_US
dc.identifier.citedreferenceBiondi, M. A. ( 1984 ), Measured vertical motion and converging and diverging horizontal flow of the midlatitude thermosphere, Geophys. Res. Lett., 11 ( 1 ), 84 – 87.en_US
dc.identifier.citedreferenceBristow, W. ( 2008 ), Statistics of velocity fluctuations observed by SuperDARN under steady interplanetary magnetic field conditions, J. Geophys. Res., 113, A11202, doi: 10.1029/2008JA013203.en_US
dc.identifier.citedreferenceBurnside, R. G., F. A. Herrero, J. W. Meriweather Jr., and J. C. G. Walker ( 1981 ), Optical observations of thermospheric dynamics at Arecibo, J. Geophys. Res., 86, 5532 – 5540.en_US
dc.identifier.citedreferenceConde, M., and P. L. Dyson ( 1995 ), Thermospheric vertical winds above Mawson, Antarctica, J. Atmos. Terr. Phys., 57, 589 – 596.en_US
dc.identifier.citedreferenceCooper, S. L., and M. Conde ( 2006 ), Origins of horizontal divergence in the auroral thermosphere: A modeling study, Geophys. Res. Lett., 33, L21111, doi: 10.1029/2006GL027601.en_US
dc.identifier.citedreferenceCooper, S. L., M. Conde, and P. Dyson ( 2009 ), Numerical simulations of thermospheric dynamics: Divergence as a proxy for vertical winds, Ann. Geophys., 27, 2491 – 2502.en_US
dc.identifier.citedreferenceCrickmore, R. I. ( 1993 ), A comparison between vertical winds and divergence in the high‐latitude thermoshere, Ann. Geophys., 11, 728 – 733.en_US
dc.identifier.citedreferenceDeng, Y., A. D. Richmond, A. J. Ridley, and H. Liu ( 2008 ), Assessment of the non‐hydrostatic effect on the upper atmosphere using a general circulation model (GCM), Geophys. Res. Lett., 35, L01104, doi: 10.1029/2007GL032182.en_US
dc.identifier.citedreferenceDickinson, R. E., E. C. Ridley, and R. G. Roble ( 1981 ), A three‐dimensional general circulation model of the thermosphere, J. Geophys. Res., 86 ( A3 ), 1499 – 1512.en_US
dc.identifier.citedreferenceFuller‐Rowell, T. J., and D. S. Evans ( 1987 ), Height‐integrated Pederson and Hall conductivity patterns inferred from TIROS‐NOAA satellite data, J. Geophys. Res., 92, 7606 – 7618.en_US
dc.identifier.citedreferenceFuller‐Rowell, T. J., and D. Rees ( 1980 ), A three dimensional time‐dependent global model of the thermosphere, J. Atmos. Sci., 37, 2545 – 2567.en_US
dc.identifier.citedreferenceHedin, A. E. ( 1991 ), Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159 – 1172.en_US
dc.identifier.citedreferenceHeppner, J. P., M. C. Liebrecht, N. C. Maynard, and R. F. Pfaff ( 1993 ), High‐latitude distributions of plasma waves and spatial irregularities from DE2 alternating current elec‐tric field observations, J. Geophys. Res., 98, 1629 – 1652.en_US
dc.identifier.citedreferenceHernandez, G. ( 1982 ), Vertical motions of the neutral thermosphere at midlatitude, Geophys. Res. Lett., 9 ( 5 ), 555 – 557.en_US
dc.identifier.citedreferenceInnis, J. L., and M. Conde ( 2001 ), Thermospheric vertical wind activity maps derived from Dynamics Explorer‐2 WATS observations, Geophys. Res. Lett., 28, 3847 – 3850.en_US
dc.identifier.citedreferenceInnis, J. L., and M. Conde ( 2002 ), High‐latitude thermospheric vertical wind activity from Dynamics Explorer 2 Wind and Temperature Spectrometer observations: Indications of a source region for polar cap gravity waves, J. Geophys. Res., 107 ( A8 ), 1172, doi: 10.1029/2001JA009130.en_US
dc.identifier.citedreferenceInnis, J. L., P. A. Greet, and P. L. Dyson ( 1996 ), Fabry‐Perot spectrometer observations of the auroral oval/polar cap boundary above Mawson, Antarctica, J. Atmos. Terr. Phys., 58, 1973 – 1988.en_US
dc.identifier.citedreferenceInnis, J. L., P. Greet, D. Murphy, M. G. Conde, and P. Dyson ( 1999 ), A large vertical wind in the thermosphere at the auroral oval/polar cap boundary seen simultaneously from mawson and davis, antarctica, J. Atmos. Sol. Terr. Phys., 61, 1047 – 1058.en_US
dc.identifier.citedreferenceIshii, M., M. Conde, R. W. Smith, M. Krynicki, E. Sagawa, and S. Watari ( 2001 ), Vertical wind observations with two fabry‐perot interferometers at poker flat, alaska, J. Geophys. Res., 106, 10,537 – 10,551.en_US
dc.identifier.citedreferenceJohnson, E. S., and R. A. Heelis ( 2005 ), Characteristics of ion velocity structure at high latitudes during steady southward interplanetary magnetic field conditions, J. Geophys. Res., 110, A12301, doi: 10.1029/2005JA011130.en_US
dc.identifier.citedreferenceJohnson, F. S., W. B. Hanson, R. R. Hodges, W. R. Coley, G. R. Carignan, and N. W. Spencer ( 1995 ), Gravity waves near 300 km over the polar cap, J. Geophys. Res., 100, 23,993 – 24,002.en_US
dc.identifier.citedreferenceKil, H., Y.‐S. Kwak, L. J. Paxton, R. R. Meier, and Y. Zhang ( 2011 ), O and N 2 disturbances in the F region during the 20 November 2003 storm seen from TIMED/GUVI, J. Geophys. Res., 116, A02314, doi: 10.1029/2010JA016227.en_US
dc.identifier.citedreferenceKivanç, Ö., and R. A. Heelis ( 1998 ), Spatial distribution of ionospheric plasma and field structures in the high‐latitude F region, J. Geophys. Res., 103, 6955 – 6968.en_US
dc.identifier.citedreferenceKlostermeyer, J. ( 1972 ), Influence of viscosity, thermal conduction, and ion drag on the propagation of atmospheric gravity waves in the thermosphere, Z. Geophys., 38, 881 – 890.en_US
dc.identifier.citedreferenceKozelov, B. V., I. V. Golovchanskaya, A. A. Ostapenko, and Y. V. Fedorenko ( 2008 ), Wavelet analysis of high‐latitude electric and magnetic fluctuations observed by the Dynamic Explorer 2 satellite, J. Geophys. Res., 113, A03308, doi: 10.1029/2007JA012575.en_US
dc.identifier.citedreferenceLund, E. J. ( 2010 ), On the dissipation scale of broadband ELF waves in the auroral region, J. Geophys. Res., 115, A01201, doi: 10.1029/2009JA014545.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.