Show simple item record

A mechanistic ecohydrological model to investigate complex interactions in cold and warm water‐controlled environments: 2. Spatiotemporal analyses

dc.contributor.authorFatichi, S.en_US
dc.contributor.authorIvanov, V. Y.en_US
dc.contributor.authorCaporali, E.en_US
dc.date.accessioned2013-01-03T19:45:44Z
dc.date.available2013-06-11T19:15:34Zen_US
dc.date.issued2012-05en_US
dc.identifier.citationFatichi, S.; Ivanov, V. Y.; Caporali, E. (2012). "A mechanistic ecohydrological model to investigate complex interactions in cold and warm water‐controlled environments: 2. Spatiotemporal analyses." Journal of Advances in Modeling Earth Systems 4(5): n/a-n/a. <http://hdl.handle.net/2027.42/95589>en_US
dc.identifier.issn1942-2466en_US
dc.identifier.issn1942-2466en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/95589
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherCambridge Univ. Pressen_US
dc.subject.otherEcohydrologyen_US
dc.subject.otherDistributed Hydrology Modelingen_US
dc.subject.otherVegetation Modelingen_US
dc.subject.otherSnow Modelingen_US
dc.subject.otherSemiariden_US
dc.titleA mechanistic ecohydrological model to investigate complex interactions in cold and warm water‐controlled environments: 2. Spatiotemporal analysesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA.en_US
dc.contributor.affiliationotherInstitute of Environmental Engineering,ETH Zürich, Zurich, Switzerland.en_US
dc.contributor.affiliationotherDepartment of Civil and Environmental Engineering, University of Florence, Florence, Italy.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/95589/1/jame61.pdf
dc.identifier.doi10.1029/2011MS000087en_US
dc.identifier.sourceJournal of Advances in Modeling Earth Systemsen_US
dc.identifier.citedreferenceRenard, K. G., M. H. Nichols, D. A. Woolhiser, and H. B. Osborn ( 2008 ), A brief background on the U.S. Department of Agriculture Agricultural Research Service Walnut Gulch Experimental Watershed, Water Resour. Res., 44, W05S02, doi: 10.1029/2006WR005691.en_US
dc.identifier.citedreferenceSeibert, J., and J. J. McDonnell ( 2002 ), On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration, Water Resour. Res., 38 ( 11 ),1241, doi: 10.1029/2001WR000978.en_US
dc.identifier.citedreferenceSeyfried, M. S., R. C. Harris, D. Marks, and B. Jacob ( 2000 ), A geographic database for watershed research: Reynolds Creek Experimental Watershed, Idaho, USA, Tech. Rep. 2000‐3, Northwest Watershed Res. Cent., Agric. Res. Serv., U.S. Dep. of Agric., Boise, Idahoen_US
dc.identifier.citedreferenceSeyfried, M., R. Harris, D. Marks, and B. Jacob ( 2001 a), Geographic database, Reynolds Creek Experimental Watershed, Idaho, United States, Water Resour. Res., 37 ( 11 ), 2825 – 2829, doi: 10.1029/2001WR000414.en_US
dc.identifier.citedreferenceSeyfried, M. S., M. D. Murdock, C. L. Hanson, G. N. Flerchinger, and S. V. Vactor ( 2001 b), Long‐term soil water content database, Reynolds Creek Experimental Watershed, Idaho, United States, Water Resour. Res., 37 ( 11 ), 2847 – 2851, doi: 10.1029/2001WR000419.en_US
dc.identifier.citedreferenceSeyfried, M. S., L. E. Grant, D. Marks, A. Winstral, and J. McNamara ( 2009 ), Simulated soil water storage effects on streamflow generation in a mountainous snowmelt environment, Idaho, USA, Hydrol. Processes, 23, 858 – 873, doi: 10.1002/hyp.7211.en_US
dc.identifier.citedreferenceSiqueira, M., G. Katul, and A. Porporato ( 2008 ), Onset of water stress, hysteresis in plant conductance, and hydraulic lift: Scaling soil water dynamics from millimeters to meters, Water Resour. Res., 44, W01432, doi: 10.1029/2007WR006094.en_US
dc.identifier.citedreferenceSiqueira, M., G. Katul, and A. Porporato ( 2009 ), Soil moisture feedbacks on convection triggers: The role of soil‐plant hydrodynamics, J. Hydrometeorol., 10, 96 – 112, doi: 10.1175/2008JHM1027.1.en_US
dc.identifier.citedreferenceSkirvin, S., M. Kidwell, S. Biedenbender, J. P. Henley, D. King, C. H. Collins, S. Moran, and M. Weltz ( 2008 ), Vegetation data, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44,W05S08, doi: 10.1029/2006WR005724.en_US
dc.identifier.citedreferenceSlaughter, C. W., D. Marks, G. N. Flerchinger, S. S. VanVactor, and M. Burgess ( 2001 ), Thirty‐five years of research data collection at the Reynolds Creek Experimental Watershed, Idaho, United States, Water Resour. Res., 37 ( 11 ), 2819 – 2823, doi: 10.1029/2001WR000413.en_US
dc.identifier.citedreferenceSperry, J. S., U. G. Hacke, R. Oren, and J. P. Comstock ( 2002 ), Water deficits and hydraulic limits to water supply, Plant Cell Environ., 25, 251 – 264, doi: 10.1046/j.0016‐8025.2001.00799.x.en_US
dc.identifier.citedreferenceStone, J. J., M. H. Nichols, D. C. Goodrich, and J. Buono ( 2008 ), Long‐term runoff database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S05 doi: 10.1029/2006WR005733.en_US
dc.identifier.citedreferenceStrasser, U., M. Bernhardt, M. Weber, G. E. Liston, and W. Mauser ( 2008 ), Is snow sublimation important in the alpine water balance ? Cryosphere, 2, 53 – 66, doi: 10.5194/tc‐2‐53‐2008.en_US
dc.identifier.citedreferenceSu, Z., T. Schmugge, W. P. Kustas, and W. J. Massman ( 2001 ), An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere, J. Appl. Meteorol., 40, 1933 – 1951, doi: 10.1175/1520‐0450(2001)040<1933:AEOTMF>2.0.CO;2.en_US
dc.identifier.citedreferenceTribbeck, M. J., R. J. Gurney, and E. M. Morris ( 2006 ), The radiative effect of a fir canopy on a snowpack, J. Hydrometeorol., 7, 880 – 895, doi: 10.1175/JHM528.1.en_US
dc.identifier.citedreferenceVeatch, W., P. D. Brooks, J. R. Gustafson, and N. P. Molotch ( 2009 ), Quantifying the effects of forest canopy cover on net snow accumulation at a continental, mid‐latitude site, Ecohydrology, 2 ( 2 ), 115 – 128, doi: 10.1002/eco.45.en_US
dc.identifier.citedreferenceVico, G., and A. Porporato ( 2008 ), Modelling C3 and C4 photosynthesis under water‐stressed conditions, Plant Soil, 313, 187 – 203, doi: 10.1007/s11104‐008‐9691‐4.en_US
dc.identifier.citedreferenceVivoni, E. R. ( 2012 ), Spatial patterns, processes and predictions in ecohydrology: Integrating technologies to meet the challenge, Ecohydrology, doi: 10.1002/eco.1248, in press.en_US
dc.identifier.citedreferenceVivoni, E. R., and et al., ( 2008 ), Vegetation controls on soil moisture distribution in the Valles Caldera, New Mexico, during the North American monsoon, Ecohydrology, 1, 225 – 238, doi: 10.1002/eco.11.en_US
dc.identifier.citedreferenceVivoni, E. R., J. C. Rodríguez, and C. J. Watts ( 2010 ), On the spatiotemporal variability of soil moisture and evapotranspiration in a mountainous basin within the North American monsoon region, Water Resour. Res., 46,W02509, doi: 10.1029/2009WR008240.en_US
dc.identifier.citedreferenceVoinov, A. A., C. DeLuca, R. R. Hood, S. Peckham, C. R. Sherwood, W. Hole, and J. P. M. Syvitski ( 2010 ), A community approach to Earth systems modeling, Eos Trans. AGU, 91 ( 13 ), 117 – 118, doi: 10.1029/2010EO130001.en_US
dc.identifier.citedreferenceWeltz, M. A., J. C. Ritchie, and H. D. Fox ( 1994 ), Comparison of laser and field measurements of vegetation height and canopy cover, Water Resour. Res., 30 ( 5 ), 1311 – 1319, doi: 10.1029/93WR03067.en_US
dc.identifier.citedreferenceWhite, M. A., P. E. Thornton, S. W. Running, and R. R. Nemani ( 2000 ), Parameterization and sensitivity analysis of the BIOME‐BGC terrestrial ecosystem model: Net primary production controls, Earth Interact., 4 ( 3 ), 1 – 85, doi: 10.1175/1087‐3562(2000)004<0003:PASAOT>2.0.CO;2.en_US
dc.identifier.citedreferenceWinstral, A., and D. Marks ( 2002 ), Simulating wind fields and snow redistribution using terrain‐based parameters to model snow accumulation and melt over a semi‐arid mountain catchment, Hydrol. Processes, 16, 3585 – 3603, doi: 10.1002/hyp.1238.en_US
dc.identifier.citedreferenceWood, E. F., and et al., ( 2011 ), Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water, Water Resour. Res., 47,W05301, doi: 10.1029/2010WR010090.en_US
dc.identifier.citedreferenceAdams, H. D., M. Guardiola‐Claramonte, G. A. Barron‐Gafford, J. C. Villegas, D. D. Breshears, C. B. Zou, P. A. Troch, and T. E. Huxman ( 2009 ), Temperature sensitivity of drought‐induced tree mortality portends increased regional die‐off under global change‐type drought, Proc. Natl Acad. Sci. U. S. A., 106 ( 17 ), 7063 – 7066, doi: 10.1073/pnas.0901438106.en_US
dc.identifier.citedreferenceAsbjornsen, H., and et al., ( 2011 ), Ecohydrological advances and applications in plant‐water relations research: A review, J. Plant Ecol., 4, 3 – 22, doi: 10.1093/jpe/rtr005.en_US
dc.identifier.citedreferenceBaldocchi, D., and et al., ( 2001 ), FLUXNET: A new tool to study the temporal and spatial variability of ecosystem‐scale carbon dioxide, water vapor, and energy flux densities, Bull. Am. Meteorol. Soc., 82 ( 11 ), 2415 – 2434, doi: 10.1175/1520‐0477(2001)082<2415:FANTTS>2.3.CO;2.en_US
dc.identifier.citedreferenceBaldocchi, D. D., L. Xu, and N. Kiang ( 2004 ), How plant functional‐type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak‐grass savanna and an annual grassland, Agric. For. Meteorol., 123, 13 – 39, doi: 10.1016/j.agrformet.2003.11.006.en_US
dc.identifier.citedreferenceBaldocchi, D. D., S. Ma, S. Rambal, L. Misson, J.‐M. Ourcival, J.‐M. Limousin, J. Pereira, and D. Papale ( 2010 ), On the differential advantages of evergreenness and deciduousness in mediterranean oak woodlands: A flux perspective, Ecol. Appl., 20 ( 6 ), 1583 – 1597, doi: 10.1890/08‐2047.1.en_US
dc.identifier.citedreferenceBergstrom, S., G. Lindstrom, and A. Pettersson ( 2002 ), Multi‐variable parameter estimation to increase confidence in hydrological modelling, Hydrol. Processes, 16 ( 2 ), 413 – 421, doi: 10.1002/hyp.332.en_US
dc.identifier.citedreferenceBerkowitz, B. ( 2002 ), Characterizing flow and transport in fractured geological media: A review, Adv. Water Resour., 25, 861 – 884, doi: 10.1016/S0309‐1708(02)00042‐8.en_US
dc.identifier.citedreferenceBertoldi, G., C. Notarnicola, G. Leitinger, S. Endrizzi, M. Zebisch, S. DellaChiesa, and U. Tappeiner ( 2010 ), Topographical and ecohydrological controls on land surface temperature in an alpine catchment, Ecohydrology, 3, 189 – 204, doi: 10.1002/eco.129.en_US
dc.identifier.citedreferenceBewley, D., R. Essery, J. Pomeroy, and C. Ménard ( 2010 ), Measurements and modelling of snowmelt and turbulent heat fluxes over shrub tundra, Hydrol. Earth Syst. Sci., 14, 1331 – 1340, doi: 10.5194/hess‐14‐1331‐2010.en_US
dc.identifier.citedreferenceBhark, E. W., and E. E. Small ( 2003 ), Association between plant canopies and the spatial patterns of infiltration in shrubland and grassland of the Chihuahuan desert, New Mexico, Ecosystems, 6, 185 – 196, doi: 10.1007/s10021‐002‐0210‐9.en_US
dc.identifier.citedreferenceBonan, G. B., S. Levis, S. Sitch, M. Vertenstein, and K. W. Oleson ( 2003 ), A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics, Global Change Biol., 9, 1543 – 1566, doi: 10.1046/j.1365‐2486.2003.00681.x.en_US
dc.identifier.citedreferenceBonan, G. B., P. J. Lawrence, K. W. Oleson, S. Levis, M. Jung, M. Reichstein, D. M. Lawrence, and S. C. Swenson ( 2011 ), Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data, J. Geophys. Res., 116,G02014, doi: 10.1029/2010JG001593.en_US
dc.identifier.citedreferenceBréda, N. J. J. ( 2003 ), Ground‐based measurements of leaf area index: A review of methods, instruments and current controversies, J. Exp. Bot., 54 ( 392 ), 2403 – 2417, doi: 10.1093/jxb/erg263.en_US
dc.identifier.citedreferenceBréda, N., R. Huc, A. Granier, and E. Dreyer ( 2006 ), Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long‐term consequence, Ann. For. Sci., 63, 625 – 644, doi: 10.1051/forest:2006042.en_US
dc.identifier.citedreferenceBreshears, D. D., O. B. Myers, C. W. Meyer, F. J. Barnes, C. B. Zou, C. D. Allen, N. G. McDowell, and W. T. Pockman ( 2009 ), Tree die‐off in response to global change‐type drought: Mortality insights from a decade of plant water potential measurements, Front. Ecol. Environ., 7 ( 4 ), 185 – 189, doi: 10.1890/080016.en_US
dc.identifier.citedreferenceBrooks, P. D., and E. R. Vivoni ( 2008 ), Mountain ecohydrology: Quantifying the role of vegetation in the water balance of montane catchments, Ecohydrology, 1, 187 – 192, doi: 10.1002/eco.27.en_US
dc.identifier.citedreferenceBroxton, P. D., P. A. Troch, and S. W. Lyon ( 2009 ), On the role of aspect to quantify water transit times in small mountainous catchments, Water Resour. Res., 45, W08427, doi: 10.1029/2008WR007438.en_US
dc.identifier.citedreferenceBrutsaert, W. ( 2005 ), Hydrology: An Introduction, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceCaylor, K. K., T. M. Scanlon, and I. Rodriguez‐Iturbe ( 2004 ), Feasible optimality of vegetation patterns in river basins, Geophys. Res. Lett., 31,L13502, doi: 10.1029/2004GL020260.en_US
dc.identifier.citedreferenceCaylor, K. K., S. Manfreda, and I. Rodriguez‐Iturbe ( 2005 ), On the coupled geomorphological and ecohydrological organization of river basins, Adv. Water Resour., 28, 69 – 86, doi: 10.1016/j.advwatres.2004.08.013.en_US
dc.identifier.citedreferenceChapin, F. S., J. T. Randerson, A. D. McGuire, J. A. Foley, and C. B. Field ( 2008 ), Changing feedbacks in the climate‐biosphere system, Front. Ecol. Environ., 6 ( 6 ), 313 – 320, doi: 10.1890/080005.en_US
dc.identifier.citedreferenceChew, R. M., and A. E. Chew ( 1965 ), The primary productivity of a desert‐shrub (Larrea tridentata) community, Ecol. Monogr., 35 ( 4 ), 355 – 375, doi: 10.2307/1942146.en_US
dc.identifier.citedreferenceClarke, H. D., D. S. Seigler, and J. E. Ebinger ( 1990 ), Acacia constricta (Fabaceae: Mimosoideae) and related species from the southwestern U.S. and Mexico, Am. J. Bot., 77 ( 3 ), 305 – 315, doi: 10.2307/2444717.en_US
dc.identifier.citedreferenceCoop, J. D., and T. J. Givnish ( 2007 ), Spatial and temporal patterns of recent forest encroachment in montane grasslands of the Valles Caldera, New Mexico, USA, J. Biogeogr., 34, 914 – 927, doi: 10.1111/j.1365‐2699.2006.01660.x.en_US
dc.identifier.citedreferenceCoop, J. D., and T. J. Givnish ( 2008 ), Constraints on tree seedling establishment in montane grasslands of the Valles Caldera, New Mexico, Ecology, 89 ( 4 ), 1101 – 1111, doi: 10.1890/06‐1333.1.en_US
dc.identifier.citedreferenceCox, J. R., G. W. Fraiser, and K. G. Renard ( 1986 ), Biomass distribution at grassland and shrubland sites, Rangelands, 8 ( 2 ), 67 – 69.en_US
dc.identifier.citedreferenceDaly, E., and A. Porporato ( 2005 ), A review of soil moisture dynamics: From rainfall infiltration to ecosystem response, Environ. Eng. Sci., 22 ( 1 ), 9 – 24, doi: 10.1089/ees.2005.22.9.en_US
dc.identifier.citedreferenceDrewry, D. T., P. Kumar, S. Long, C. Bernacchi, X.‐Z. Liang, and M. Sivapalan ( 2010 ), Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway, J. Geophys. Res., 115,G04022, doi: 10.1029/2010JG001340.en_US
dc.identifier.citedreferenceDunkerley, D. L. ( 2002 ), Infiltration rates and soil moisture in a groved mulga community near Alice Springs, arid central Australia: Evidence for complex internal rainwater redistribution in a runoff‐runon landscape, J. Arid Environ., 51, 199 – 219, doi: 10.1006/jare.2001.0941.en_US
dc.identifier.citedreferenceEllis, C. R., J. W. Pomeroy, T. Brown, and J. MacDonald ( 2010 ), Simulation of snow accumulation and melt in needleleaf forest environments, Hydrol. Earth Syst. Sci., 14, 925 – 940, doi: 10.5194/hess‐14‐925‐2010.en_US
dc.identifier.citedreferenceEmanuel, R. E., H. E. Epstein, B. L. McGlynn, D. L. Welsch, D. J. Muth, and P. D'Odorico ( 2010 ), Spatial and temporal controls on watershed ecohydrology in the northern Rocky Mountains, Water Resour. Res., 46, W11553, doi: 10.1029/2009WR008890.en_US
dc.identifier.citedreferenceEmmerich, W. E., and C. L. Verdugo ( 2008 ), Long‐term carbon dioxide and water flux database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S09, doi: 10.1029/2006WR005693.en_US
dc.identifier.citedreferenceEssery, R., N. Rutter, J. Pomeroy, R. Baxter, M. Stähli, D. Gustafsson, A. Barr, P. Bartlett, and K. Elder ( 2009 ), SNOWMIP2 an evaluation of forest snow process simulations, Bull. Am. Meteorol. Soc., 90 ( 8 ), 1120 – 1135, doi: 10.1175/2009BAMS2629.1.en_US
dc.identifier.citedreferenceFatichi, S. ( 2010 ), The modeling of hydrological cycle and its interaction with vegetation in the framework of climate change, PhD thesis,Univ. of Florence, Florence, Italyen_US
dc.identifier.citedreferenceFatichi, S., V. Y. Ivanov, and E. Caporali ( 2011 ), Simulation of future climate scenarios with a weather generator, Adv. Water Resour., 34, 448 – 467, doi: 10.1016/j.advwatres.2010.12.013.en_US
dc.identifier.citedreferenceFatichi, S., V. Y. Ivanov, and E. Caporali ( 2012 ), A mechanistic ecohydrological model to investigate complex interactions in cold and warm water‐controlled environments: 1. Theoretical framework and plot‐scale analysis, J. Adv. Model. Earth Syst., doi: 10.1029/2011MS000086, in press.en_US
dc.identifier.citedreferenceFlerchinger, G. N., D. Marks, M. L. Reba, Q. Yu, and M. S. Seyfried ( 2010 ), Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment, Hydrol. Earth Syst. Sci., 14, 965 – 978, doi: 10.5194/hess‐14‐965‐2010.en_US
dc.identifier.citedreferenceFranco, A. C., A. G. deSoyza, R. A. Virginia, J. F. Reynolds, and W. G. Whitford ( 1994 ), Effects of plant size and water relations on gas exchange and growth of the desert shrub Larrea tridentata, Oecologia, 97, 171 – 178, doi: 10.1007/BF00323146.en_US
dc.identifier.citedreferenceFriend, A. D., and et al., ( 2007 ), FLUXNET and modelling the global carbon cycle, Global Change Biol., 13, 610 – 633, doi: 10.1111/j.1365‐2486.2006.01223.x.en_US
dc.identifier.citedreferenceGleeson, T., L. Smith, N. Moosdorf, J. Hartmann, H. H. Dürr, A. H. Manning, L. P. H. van Beek, and A. M. Jellinek ( 2011 ), Mapping permeability over the surface of the Earth, Geophys. Res. Lett., 38, L02401, doi: 10.1029/2010GL045565.en_US
dc.identifier.citedreferenceGough, C. M., C. E. Flower, C. S. Vogel, D. Dragoni, and P. S. Curtis ( 2009 ), Whole‐ecosystem labile carbon production in a north temperate deciduous forest, Agric. For. Meteorol., 149, 1531 – 1540, doi: 10.1016/j.agrformet.2009.04.006.en_US
dc.identifier.citedreferenceHamerlynck, E. P., and T. E. Huxman ( 2009 ), Ecophysiology of two Sonoran Desert evergreen shrubs during extreme drought, J. Arid Environ., 73, 582 – 585, doi: 10.1016/j.jaridenv.2008.11.012.en_US
dc.identifier.citedreferenceHanson, C. L. ( 2000 ), Precipitation monitoring at the Reynolds Creek Experimental Watershed, Idaho, USA, Tech. Rep. 2000‐4, Northwest Watershed Res. Cent., Agric. Res. Serv., U.S. Dep. of Agric., Boise, Idahoen_US
dc.identifier.citedreferenceHanson, C. L. ( 2001 ), Long‐term precipitation database, Reynolds Creek Experimental Watershed, Idaho, United States, Water Resour. Res., 37 ( 11 ), 2831 – 2834, doi: 10.1029/2001WR000415.en_US
dc.identifier.citedreferenceHanson, C. L., D. Marks, and S. S. VanVactor ( 2001 ), Long‐term climate database, Reynolds Creek Experimental Watershed, Idaho, United States, Water Resour. Res., 37 ( 11 ), 2839 – 2841, doi: 10.1029/2001WR000417.en_US
dc.identifier.citedreferenceHousman, D. C., E. Naumburg, T. E. Huxman, T. N. Charlet, R. S. Nowak, and S. D. Smith ( 2006 ), Increases in desert shrub productivity under elevated carbon dioxide vary with water availability, Ecosystems, 9, 374 – 385, doi: 10.1007/s10021‐005‐0124‐4.en_US
dc.identifier.citedreferenceHowes, D. A., and A. D. Abrahams ( 2003 ), Modeling runoff and runon in a desert shrubland ecosystem, Jornada Basin, New Mexico, Geomorphology, 53, 45 – 73, doi: 10.1016/S0169‐555X(02)00347‐1.en_US
dc.identifier.citedreferenceHwang, T., L. Band, and T. C. Hales ( 2009 ), Ecosystem processes at the watershed scale: Extending optimality theory from plot to catchment, Water Resour. Res., 45, W11425, doi: 10.1029/2009WR007775.en_US
dc.identifier.citedreferenceIvanov, V. Y., R. L. Bras, and E. R. Vivoni ( 2008 a), Vegetation‐hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks, Water Resour. Res., 44, W03429, doi: 10.1029/2006WR005588.en_US
dc.identifier.citedreferenceIvanov, V. Y., R. L. Bras, and E. R. Vivoni ( 2008 b), Vegetation‐hydrology dynamics in complex terrain of semiarid areas: 2. Energy‐water controls of vegetation spatiotemporal dynamics and topographic niches of favorability, Water Resour. Res., 44, W03430, doi: 10.1029/2006WR005595.en_US
dc.identifier.citedreferenceJustice, C. O., and et al., ( 1998 ), The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research, IEEE Trans. Geosci. IEEE Trans., 36, 1228 – 1249.en_US
dc.identifier.citedreferenceKattge, J., and W. Knorr ( 2007 ), Temperature acclimation in a biochemical model of photosynthesis: A reanalysis of data from 36 species, Plant Cell Environ., 30, 1176 – 1190, doi: 10.1111/j.1365‐3040.2007.01690.x.en_US
dc.identifier.citedreferenceKatul, G. G., R. Leuning, and R. Oren ( 2003 ), Relationship between plant hydraulic and biochemical properties derived from a steady‐state coupled water and carbon transport model, Plant Cell Environ., 26, 339 – 350, doi: 10.1046/j.1365‐3040.2003.00965.x.en_US
dc.identifier.citedreferenceKeefer, T. O., M. S. Moran, and G. B. Paige ( 2008 ), Long‐term meteorological and soil hydrology database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S07, doi: 10.1029/2006WR005702.en_US
dc.identifier.citedreferenceKelleners, T. J., D. G. Chandler, J. P. McNamara, M. M. Gribb, and M. S. Seyfried ( 2010 ), Modeling runoff generation in a small snow‐dominated mountainous catchment, Vadose Zone J., 9, 517 – 527, doi: 10.2136/vzj2009.0033.en_US
dc.identifier.citedreferenceKeller, M., D. S. Schimel, W. W. Hargrove, and F. M. Hoffman ( 2008 ), A continental strategy for the National Ecological Observatory Network, Front. Ecol. Environ., 6 ( 5 ), 282 – 284, doi: 10.1890/1540‐9295(2008)6[282:ACSFTN]2.0.CO;2.en_US
dc.identifier.citedreferenceKing, D. M., S. M. Skirvin, C. D. Holifield Collins, M. S. Moran, S. H. Biedenbender, M. R. Kidwell, M. A. Weltz, and A. Diaz‐Gutierrez ( 2008 ), Assessing vegetation change temporally and spatially in southeastern Arizona, Water Resour. Res., 44,W05S15, doi: 10.1029/2006WR005850.en_US
dc.identifier.citedreferenceKirchner, J. W. ( 2006 ), Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology, Water Resour. Res., 42, W03S04, doi: 10.1029/2005WR004362.en_US
dc.identifier.citedreferenceKnyazikhin, Y., J. V. Martonchik, R. B. Myneni, D. J. Diner, and S. W. Running ( 1998 ), Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data, J. Geophys. Res., 03, 32,257 – 32,275.en_US
dc.identifier.citedreferenceKrinner, G., N. Viovy, N. de Noblet‐Ducoudré, J. Ogée, J. Polcher, P. Friedlingstein, P. Ciais, S. Sitch, and I. C. Prentice ( 2005 ), A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system, Global Biogeochem. Cycles, 19, GB1015, doi: 10.1029/2003GB002199.en_US
dc.identifier.citedreferenceKurc, S. A., and E. E. Small ( 2004 ), Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems during the summer monsoon season, central New Mexico, Water Resour. Res., 40,W09305, doi: 10.1029/2004WR003068.en_US
dc.identifier.citedreferenceLaio, F., A. Porporato, L. Ridolfi, and I. Rodriguez‐Iturbe. ( 2001 ), Plants in water‐controlled ecosystems: active role in hydrological processes and response to water stress. II. Probabilistic soil moisture dynamics, Adv. Water Resour., 24, 707 – 723, doi: 10.1016/S0309‐1708(01)00005‐7.en_US
dc.identifier.citedreferenceLeRoux, X., A. Lacointe, A. Escobar‐Gutiérrez, and S. LeDizès ( 2001 ), Carbon‐based models of individual tree growth: A critical appraisal, Ann. For. Sci., 58, 459 – 506, doi: 10.1051/forest:2001140.en_US
dc.identifier.citedreferenceLitton, C. M., J. W. Raich, and M. G. Ryan ( 2007 ), Carbon allocation in forest ecosystems, Global Change Biol., 13, 2089 – 2109, doi: 10.1111/j.1365‐2486.2007.01420.x.en_US
dc.identifier.citedreferenceLoague, K., and J. E. VanderKwaak ( 2004 ), Physics‐based hydrologic response simulation: platinum bridge, 1958 Edsel, or useful tool, Hydrol. Processes, 18, 2949 – 2956, doi: 10.1002/hyp.5737.en_US
dc.identifier.citedreferenceLópez‐Moreno, J. I., and J. Latron ( 2008 ), Influence of canopy density on snow distribution in a temperate mountain range, Hydrol. Processes, 22, 117 – 126, doi: 10.1002/hyp.6572.en_US
dc.identifier.citedreferenceMackay, D. S. ( 2001 ), Evaluation of hydrologic equlibrium in a mountainous watershed: Incorporating forest canopy spatial adjustment to soil biogeochemical processes, Adv. Water Resour., 24, 1211 – 1227, doi: 10.1016/S0309‐1708(01)00040‐9.en_US
dc.identifier.citedreferenceMarks, D. ( 2001 ), Introduction to Special Section: Reynolds Creek Experimental Watershed, Water Resour. Res., 37 ( 11 ), 2817, doi: 10.1029/2001WR000941.en_US
dc.identifier.citedreferenceMarks, D., and A. Winstral ( 2001 ), Comparison of snow deposition, the snow cover energy balance, and snowmelt at two sites in a semiarid mountain basin, J. Hydrometeorol., 2 ( 3 ), 213 – 227, doi: 10.1175/1525‐7541(2001)002<0213:COSDTS>2.0.CO;2.en_US
dc.identifier.citedreferenceMarks, D., K. R. Cooley, D. C. Robertson, and A. Winstral ( 2000 ), Snow measurements and monitoring, Reynolds Creek Experimental Watershed, Idaho, USA, Tech. Rep. 2000‐5, Northwest Watershed Res. Cent., Agric. Res. Serv., U.S. Dep. of Agric., Boise, Idahoen_US
dc.identifier.citedreferenceMarks, D., K. R. Cooley, D. C. Robertson, and A. Winstral ( 2001 ), Long‐term snow database,Reynolds Creek Experimental Watershed, Idaho, United States, Water Resour. Res., 37 ( 11 ), 2835 – 2838, doi: 10.1029/2001WR000416.en_US
dc.identifier.citedreferenceMarks, D., A. Winstral, and M. Seyfried ( 2002 ), Simulation of terrain and forest shelter effects on patterns of snow deposition, snowmelt and runoff over a semi‐arid mountain catchment, Hydrol. Processes, 16, 3605 – 3626, doi: 10.1002/hyp.1237.en_US
dc.identifier.citedreferenceMcNamara, J. P., D. Chandler, M. Seyfried, and S. Achet ( 2005 ), Soil moisture states, lateral flow, and streamflow generation in a semi‐arid, snowmelt‐driven catchment, Hydrol. Processes, 19, 4023 – 4038, doi: 10.1002/hyp.5869.en_US
dc.identifier.citedreferenceMolnar, P., and P. Burlando ( 2005 ), Preservation of rainfall properties in stochastic disaggregation by a simple random cascade model, Atmos. Res., 77, 137 – 151, doi: 10.1016/j.atmosres.2004.10.024.en_US
dc.identifier.citedreferenceMolnar, P., and P. Burlando ( 2008 ), Variability in the scale properties of high‐resolution precipitation data in the Alpine climate of Switzerland, Water Resour. Res., 44, W10404, doi: 10.1029/2007WR006142.en_US
dc.identifier.citedreferenceMuldavin, E. H., D. I. Moore, S. L. Collins, K. R. Wetherill, and D. C. Lightfoot ( 2008 ), Aboveground net primary production dynamics in a northern Chihuahuan Desert ecosystem, Oecologia, 155, 123 – 132, doi: 10.1007/s00442‐007‐0880‐2.en_US
dc.identifier.citedreferenceMusselman, K. N., N. P. Molotch, and P. D. Brooks ( 2008 ), Effects of vegetation on snow accumulation and ablation in a mid‐latitude sub‐alpine forest, Hydrol. Processes, 22, 2767 – 2776, doi: 10.1002/hyp.7050.en_US
dc.identifier.citedreferenceMyneni, R. B., and et al., ( 2002 ), Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data, Remote Sens. Environ., 83, 214 – 231, doi: 10.1016/S0034‐4257(02)00074‐3.en_US
dc.identifier.citedreferenceNardi, F., S. Grimaldi, M. Santini, A. Petroselli, and L. Ubertini ( 2008 ), Hydrogeomorphic properties of simulated drainage patterns using digital elevation models: The flat area issue, Hydrol. Sci. J., 53 ( 6 ), 1176 – 1193, doi: 10.1623/hysj.53.6.1176.en_US
dc.identifier.citedreferenceNayak, A., D. Marks, D. G. Chandler, and M. Seyfried ( 2010 ), Long‐term snow, climate, and streamflow trends at the Reynolds Creek Experimental Watershed, Owyhee Mountains, Idaho, United States, Water Resour. Res., 46, W06519, doi: 10.1029/2008WR007525.en_US
dc.identifier.citedreferenceNearing, M. A., M. H. Nichols, J. J. Stone, K. G. Renard, and J. R. Simanton ( 2007 ), Sediment yields from unit‐source semiarid watersheds at Walnut Gulch, Water Resour. Res., 43,W06426, doi: 10.1029/2006WR005692.en_US
dc.identifier.citedreferenceNichols, M. H., J. J. Stone, and M. A. Nearing ( 2008 ), Sediment database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44,W05S06, doi: 10.1029/2006WR005682.en_US
dc.identifier.citedreferenceOishi, A. C., R. Oren, K. A. Novick, S. Palmroth, and G. G. Katul ( 2010 ), Interannual invariability of forest evapotranspiration and its consequence to water flow downstream, Ecosystems, 13, 421 – 436, doi: 10.1007/s10021‐010‐9328‐3.en_US
dc.identifier.citedreferenceOreskes, N., K. Shrader‐Frechette, and K. Belitz ( 1994 ), Verification, validation, and confirmation of numerical models in the earth sciences, Science, 263 ( 5147 ), 641 – 646, doi: 10.1126/science.263.5147.641.en_US
dc.identifier.citedreferencePaola, C., E. Foufoula‐Georgiou, W. E. Dietrich, M. Hondzo, D. Mohrig, G. Parker, M. E. Power, I. Rodriguez‐Iturbe, V. Voller, and P. Wilcock ( 2006 ), Toward a unified science of the Earth's surface: Opportunities for synthesis among hydrology, geomorphology, geochemistry, and ecology, Water Resour. Res., 42,W03S10, doi: 10.1029/2005WR004336.en_US
dc.identifier.citedreferencePokhrel, P., H. V. Gupta, and T. Wagener ( 2008 ), A spatial regularization approach to parameter estimation for a distributed watershed model, Water Resour. Res., 44,W12419, doi: 10.1029/2007WR006615.en_US
dc.identifier.citedreferenceRasmussen, C., P. A. Troch, J. Chorover, P. Brooks, J. Pelletier, and T. E. Huxman ( 2011 ), An open system framework for integrating critical zone structure and function, Biogeochemistry, 102, 15 – 29, doi: 10.1007/s10533‐010‐9476‐8.en_US
dc.identifier.citedreferenceReba, M. L., D. Marks, M. Seyfried, A. Winstral, M. Kumar, and G. Flerchinger ( 2011 ), A long‐term data set for hydrologic modeling in a snow‐dominated mountain catchment, Water Resour. Res., 47, W07702, doi: 10.1029/2010WR010030.en_US
dc.identifier.citedreferenceRiveros‐Iregui, D. A., and B. L. McGlynn ( 2009 ), Landscape structure control on soil CO 2 efflux variability in complex terrain: Scaling from point observations to watershed scale fluxes, J. Geophys. Res., 114,G02010, doi: 10.1029/2008JG000885.en_US
dc.identifier.citedreferenceRodriquez‐Iturbe, I., P. D'Odorico, A. Porporato, and L. Ridolfi ( 1999 ), On the spatial and temporal links between vegetation, climate, and soil moisture, Water Resour. Res., 35, 3709 – 3722, doi: 10.1029/1999WR900255.en_US
dc.identifier.citedreferenceRupp, D. E., R. F. Keim, M. Ossiander, M. Brugnach, and J. S. Selker ( 2009 ), Time scale and intensity dependency in multiplicative cascades for temporal rainfall disaggregation, Water Resour. Res., 45, W07409, doi: 10.1029/2008WR007321.en_US
dc.identifier.citedreferenceRutter, N., and et al., ( 2009 ), Evaluation of forest snow processes models (SnowMIP2), J. Geophys. Res., 114,D06111, doi: 10.1029/2008JD011063.en_US
dc.identifier.citedreferenceSala, A., F. Piper, and G. Hoch ( 2010 ), Physiological mechanisms of drought‐induced tree mortality are far from being resolved, New Phytol., 186, 274 – 281, doi: 10.1111/j.1469‐8137.2009.03167.x.en_US
dc.identifier.citedreferenceSaxton, K. E., and W. J. Rawls ( 2006 ), Soil water characteristic estimates by texture and organic matter for hydrologic solutions, Soil Sci. Soc. Am. J., 70, 1569 – 1578, doi: 10.2136/sssaj2005.0117.en_US
dc.identifier.citedreferenceScanlon, B. R., D. G. Levitt, R. C. Reedy, K. E. Keese, and M. J. Sully ( 2005 ), Ecological controls on water‐cycle response to climate variability in deserts, Proc. Natl. Acad. Sci. U. S. A., 102 ( 17 ), 6033 – 6038, doi: 10.1073/pnas.0408571102.en_US
dc.identifier.citedreferenceScott, R. L., W. J. Shuttleworth, T. O. Keefer, and A. W. Warrick ( 2000 ), Modeling multiyear observations of soil moisture recharge in the semiarid American Southwest, Water Resour. Res., 36 ( 8 ), 2233, doi: 10.1029/2000WR900116.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.