Show simple item record

Assessing the Uncertainty in Tropical Cyclone Simulations in NCAR's Community Atmosphere Model

dc.contributor.authorReed, Kevin A.en_US
dc.contributor.authorJablonowski, Christianeen_US
dc.date.accessioned2013-02-12T19:00:38Z
dc.date.available2013-02-12T19:00:38Z
dc.date.issued2011-03en_US
dc.identifier.citationReed, Kevin A.; Jablonowski, Christiane (2011). "Assessing the Uncertainty in Tropical Cyclone Simulations in NCAR's Community Atmosphere Model." Journal of Advances in Modeling Earth Systems 3(3): n/a-n/a. <http://hdl.handle.net/2027.42/96294>en_US
dc.identifier.issn1942-2466en_US
dc.identifier.issn1942-2466en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96294
dc.publisherCambridge Univ. Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherGeneral Circulation Modelingen_US
dc.subject.otherTropical Cyclonesen_US
dc.titleAssessing the Uncertainty in Tropical Cyclone Simulations in NCAR's Community Atmosphere Modelen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96294/1/jame39.pdf
dc.identifier.doi10.1029/2011MS000076en_US
dc.identifier.sourceJournal of Advances in Modeling Earth Systemsen_US
dc.identifier.citedreferenceRogers, R., M. L. Black, S. S. Chen, and R. A. Black ( 2007 ), An evaluation of microphysics fields from mesoscale model simulations of tropical cyclones. Part I: Comparisons with observations, J. Atmos. Sci., 64, 1811 – 1834, doi: 10.1175/JAS3932.1.en_US
dc.identifier.citedreferenceReed, K. A., and C. Jablonowski ( 2011 a), An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs, Mon. Weather Rev., 139, 689 – 710, doi: 10.1175/2010MWR3488.1.en_US
dc.identifier.citedreferenceReed, K. A., and C. Jablonowski ( 2011 b), Impact of physical parameterizations on idealized tropical cyclones in the community atmosphere model, Geophys. Res. Lett., 38, L04805, doi: 10.1029/2010GL046297.en_US
dc.identifier.citedreferenceRichter, J. H., and P. J. Rasch ( 2008 ), Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3, J. Clim., 21, 1487 – 1499, doi: 10.1175/2007JCLI1789.1.en_US
dc.identifier.citedreferenceRingler, T. D., D. Jacobsen, M. Gunzburger, L. Ju, M. Duda, and W. C. Skamarock ( 2011 ), Exploring a multi‐resolution modeling approach within the shallow‐water equations, Mon. Weather Rev., doi: 10.1175/MWR‐D‐10‐05049.1, in press.en_US
dc.identifier.citedreferenceShen, B. W., R. Atlas, J. ‐D. Chern, O. Reale, S. ‐J. Lin, T. Lee, and J. Chang ( 2006 a), The 0.125 degree finite‐volume general circulation model on the NASA Columbia supercomputer: Preliminary simulations of mesoscale vortices, Geophys. Res. Lett., 33, L05801, doi: 10.1029/2005GL024594.en_US
dc.identifier.citedreferenceShen, B. W., R. Atlas, O. Reale, S. ‐J. Lin, J. ‐D. Chern, J. Chang, C. Henze, and J. ‐L. Li ( 2006 b), Hurricane forecasts with a global mesoscale‐resolving model: Preliminary results with Hurricane Katrina (2005), Geophys. Res. Lett., 33, L13813, doi: 10.1029/2006GL026143.en_US
dc.identifier.citedreferenceSimmons, A. J., and D. M. Burridge ( 1981 ), An energy and angular‐momentum conserving vertical finite‐difference scheme and hybrid vertical coordinates, Mon. Weather Rev., 109, 758 – 766, doi: 10.1175/1520‐0493(1981)109<0758:AEAAMC>2.0.CO;2.en_US
dc.identifier.citedreferenceSmith, R. K. ( 2000 ), The role of cumulus convection in hurricanes and its representation in hurricane models, Rev. Geophys., 38, 465 – 490, doi: 10.1029/1999RG000080.en_US
dc.identifier.citedreferenceStainforth, D. A. ( 2005 ), Uncertainty in predictions of the climate response to rising levels of greenhouse gases, Nature, 433, 403 – 406, doi: 10.1038/nature03301.en_US
dc.identifier.citedreferenceStainforth, D. A., M. R. Allen, E. R. Tredger, and L. A. Smith ( 2007 ), Confidence, uncertainty and decision‐support relevance in climate predictions, Philos. Trans. R. Soc. A, 365, 2145 – 2161, doi: 10.1098/rsta.2007.2074.en_US
dc.identifier.citedreferenceVan Sang, N., R. K. Smith, and M. T. Montgomery ( 2008 ), Tropical‐cyclone intensification and predictability in three dimensions, Q. J. R. Meteorol. Soc., 134, 563 – 582, doi: 10.1002/qj.235.en_US
dc.identifier.citedreferenceWehner, M. F., G. Bala, P. Duffy, A. A. Mirin, and R. Romano ( 2010 ), Towards direct simulation of future tropical cyclone statistics in a high‐resolution global atmospheric model, Adv. Meteorol., 2010, 915303, doi: 10.1155/2010/915303.en_US
dc.identifier.citedreferenceWeller, H., H. G. Weller, and A. Fournier ( 2009 ), Voronoi, Delaunay and block structured mesh refinement for solution of the shallow water equations on the sphere, Mon. Weather Rev., 137, 4208 – 4224, doi: 10.1175/2009MWR2917.1.en_US
dc.identifier.citedreferenceZhang, G. J., and N. A. McFarlane ( 1995 ), Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre General Circulation Model, Atmos. Ocean, 33, 407 – 446, doi: 10.1080/07055900.1995.9649539.en_US
dc.identifier.citedreferenceZhao, M., I. M. Held, S. ‐J. Lin, and G. A. Vecchi ( 2009 ), Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50‐km resolution GCM, J. Clim., 22, 6653 – 6678, doi: 10.1175/2009JCLI3049.1.en_US
dc.identifier.citedreferenceZhu, H., and A. Thorpe ( 2006 ), Predictability of extratropical cyclones: The influence of initial condition and model uncertainties, J. Atmos. Sci., 63, 1483 – 1497, doi: 10.1175/JAS3688.1.en_US
dc.identifier.citedreferenceAtlas, R., O. Reale, B. ‐W. Shen, S. ‐J. Lin, J. ‐D. Chern, W. Putman, T. Lee, K. ‐S. Yeh, M. Bosilovich, and J. Radakovich ( 2005 ), Hurricane forecasting with the high‐resolution NASA finite volume general circulation model, Geophys. Res. Lett., 32, L03807, doi: 10.1029/2004GL021513.en_US
dc.identifier.citedreferenceBaer, F., H. Wang, J. J. Tribbia, and A. Fournier ( 2006 ), Climate modeling with spectral elements, Mon. Weather Rev., 134, 3610 – 3624, doi: 10.1175/MWR3360.1.en_US
dc.identifier.citedreferenceBell, M. M., and M. T. Montgomery ( 2008 ), Observed structure, evolution, and potential intensity of Category 5 Hurricane Isabel (2003) from 12 to 14 September, Mon. Weather Rev., 136, 2023 – 2046, doi: 10.1175/2007MWR1858.1.en_US
dc.identifier.citedreferenceBengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J. Luo, and T. Yamagata ( 2007 ), How may tropical cyclones change in a warmer climate? Tellus, Ser. A, 59, 539 – 561, doi: 10.1111/j.1600‐0870.2007.00251.x.en_US
dc.identifier.citedreferenceBretherton, C. S., and S. Park ( 2009 ), A new moist turbulence parameterization in the Community Atmosphere Model, J. Clim., 22, 3422 – 3448, doi: 10.1175/2008JCLI2556.1.en_US
dc.identifier.citedreferenceDoblas‐Reyes, F. J. ( 2009 ), Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts, Q. J. R. Meteorol. Soc., 135, 1538 – 1559, doi: 10.1002/qj.464.en_US
dc.identifier.citedreferenceEmanuel, K. A. ( 1988 ), The maximum intensity of hurricanes, J. Atmos. Sci., 45, 1143 – 1155, doi: 10.1175/1520‐0469(1988)045<1143:TMIOH>2.0.CO;2.en_US
dc.identifier.citedreferenceHack, J. J. ( 1994 ), Parametrization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2), J. Geophys. Res., 99, 5551 – 5568, doi: 10.1029/93JD03478.en_US
dc.identifier.citedreferenceHill, K. A., and G. M. Lackmann ( 2009 ), Analysis of idealized tropical cyclone simulations using the Weather Research and Forecasting model: Sensitivity to turbulence parameterization and grid spacing, Mon. Weather Rev., 137, 745 – 765, doi: 10.1175/2008MWR2220.1.en_US
dc.identifier.citedreferenceHolland, G. J. ( 1983 ), Tropical cyclone motion: Environmental interaction plus a beta effect, J. Atmos. Sci., 40, 328 – 342, doi: 10.1175/1520‐0469(1983)040<0328:TCMEIP>2.0.CO;2.en_US
dc.identifier.citedreferenceHoltslag, A. A. M., and B. A. Boville ( 1993 ), Local versus nonlocal boundary‐layer diffusion in a global climate model, J. Clim., 6, 1825 – 1842, doi: 10.1175/1520‐0442(1993)006<1825:LVNBLD>2.0.CO;2.en_US
dc.identifier.citedreferenceHurrell, J., G. A. Meehl, D. Bader, T. L. Delworth, B. Kirtman, and B. Wielicki ( 2009 ), A unified modeling approach to climate system prediction, Bull. Am. Meteorol. Soc., 90, 1819 – 1832, doi: 10.1175/2009BAMS2752.1.en_US
dc.identifier.citedreferenceJablonowski, C., and D. L. Williamson ( 2011 ), The pros and cons of diffusion, filters and fixers in atmospheric general circulation models, in Numerical Techniques for Global Atmospheric Models, edited by P. H. Lauritzen et al. Lect. Notes Comput. Sci. Eng., 80, 381 – 493, doi: 10.1007/978‐3‐642‐11640‐7_13.en_US
dc.identifier.citedreferenceJablonowski, C., R. C. Oehmke, and Q. F. Stout ( 2009 ), Block‐structured adaptive meshes and reduced grids for atmospheric general circulation models, Philos. Trans. R. Soc. A, 367, 4497 – 4522, doi: 10.1098/rsta.2009.0150.en_US
dc.identifier.citedreferenceJordan, C. L. ( 1958 ), Mean soundings for the West Indies area, J. Meteorol., 15, 91 – 97, doi: 10.1175/1520‐0469(1958)015<0091:MSFTWI>2.0.CO;2.en_US
dc.identifier.citedreferenceLauritzen, P. H., C. Jablonowski, M. A. Taylor, and R. D. Nair ( 2010 ), Rotated versions of the Jablonowski steadystate and baroclinic wave test cases: A dynamical core intercomparison, J. Adv. Model. Earth Syst., 2, 15, doi: 10.3894/JAMES.2010.2.15.en_US
dc.identifier.citedreferenceLin, S. J. ( 2004 ), A “vertically Lagrangian” finite‐volume dynamical core for global models, Mon. Weather Rev., 132, 2293 – 2307, doi: 10.1175/1520‐0493(2004)132<2293:AVLFDC>2.0.CO;2.en_US
dc.identifier.citedreferenceLin, S. J., and R. B. Rood ( 1996 ), Multidimensional flux‐form semi‐Lagrangian transport scheme, Mon. Weather Rev., 124, 2046 – 2070, doi: 10.1175/1520‐0493(1996)124<2046:MFFSLT>2.0.CO;2.en_US
dc.identifier.citedreferenceMeehl, G. A. ( 2007 ), Global climate projections, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al.,pp. 747 – 845, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceMontgomery, M. T., M. M. Bell, S. D. Aberson, and M. L. Black ( 2006 ), Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates, Bull. Am. Meteorol. Soc., 87, 1335 – 1347, doi: 10.1175/BAMS‐87‐10‐1335.en_US
dc.identifier.citedreferenceMurphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth ( 2004 ), Quantification of modelling uncertainties in a large ensemble of climate change simulations, Nature, 430, 768 – 772, doi: 10.1038/nature02771.en_US
dc.identifier.citedreferenceNeale, R. B., and B. J. Hoskins ( 2000 ), A standard test for AGCMs including their physical parametrizations: I: The proposal, Atmos. Sci. Lett., 1, 101 – 107, doi: 10.1006/asle.2000.0019.en_US
dc.identifier.citedreferenceNeale, R. B., J. H. Richter, and M. Jochum ( 2008 ), The impact of convection on ENSO: From a delayed oscillator to a series of events, J. Clim., 21, 5904 – 5924, doi: 10.1175/2008JCLI2244.1.en_US
dc.identifier.citedreferenceNeale, R. B., et al. ( 2010 a), Description of the NCAR Community Atmosphere Model (CAM 4.0), NCAR Tech. Note NCAR/TN‐XXX+STR, 206 pp., Natl. Cent. for Atmos. Res, Boulder, Colo.en_US
dc.identifier.citedreferenceNeale, R. B., et al. ( 2010 b), Description of the NCAR Community Atmosphere Model (CAM 5.0), NCAR Tech. Note NCAR/TN‐XXX+STR,, 282 pp., Natl. Cent. for Atmos. Res, Boulder, Colo.en_US
dc.identifier.citedreferenceNolan, D. S. ( 2007 ), What is the trigger for tropical cyclogenesis? Aust. Meteorol. Mag., 56, 241 – 266.en_US
dc.identifier.citedreferenceOouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda ( 2006 ), Tropical cyclone climatology in a global‐warming climate as simulated in a 20 kmmesh global atmospheric model: Frequency and wind intensity analyses, J. Meteorol. Soc. Jpn., 84 ( 2 ), 259 – 276, doi: 10.2151/jmsj.84.259.en_US
dc.identifier.citedreferencePalmer, T. N. ( 2000 ), Predicting uncertainty in forecasts of weather and climate, Rep. Prog. Phys., 63, 71 – 116, doi: 10.1088/0034‐4885/63/2/201.en_US
dc.identifier.citedreferencePalmer, T. N. ( 2001 ), A nonlinear dynamical perspective on model error: A proposal for nonlocal stochastic‐dynamic parametrization in weather and climate prediction models, Q. J. R. Meteorol. Soc., 127, 279 – 304, doi: 10.1002/qj.49712757202.en_US
dc.identifier.citedreferencePalmer, T. N., F. J. Doblas‐Reyes, A. Weisheimer, and M. J. Rodwell ( 2008 ), Towards seamless prediction, Bull. Am. Meteorol. Soc., 89, 459 – 470, doi: 10.1175/BAMS‐89‐4‐459.en_US
dc.identifier.citedreferencePark, S., and C. S. Bretherton ( 2009 ), The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model, J. Clim., 22, 3449 – 3469, doi: 10.1175/2008JCLI2557.1.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.