Show simple item record

Neogene origins and implied warmth tolerance of Amazon tree species

dc.contributor.authorDick, Christopher W.en_US
dc.contributor.authorLewis, Simon L.en_US
dc.contributor.authorMaslin, Marken_US
dc.contributor.authorBermingham, Eldredgeen_US
dc.date.accessioned2013-02-12T19:01:00Z
dc.date.available2013-02-12T19:01:00Z
dc.date.issued2012-01en_US
dc.identifier.citationDick, Christopher W.; Lewis, Simon L.; Maslin, Mark; Bermingham, Eldredge (2012). "Neogene origins and implied warmth tolerance of Amazon tree species." Ecology and Evolution 3(1): 162-169. <http://hdl.handle.net/2027.42/96354>en_US
dc.identifier.issn2045-7758en_US
dc.identifier.issn2045-7758en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96354
dc.description.abstractTropical rain forest has been a persistent feature in South America for at least 55 million years. The future of the contemporary Amazon forest is uncertain, however, as the region is entering conditions with no past analogue, combining rapidly increasing air temperatures, high atmospheric carbon dioxide concentrations, possible extreme droughts, and extensive removal and modification by humans. Given the long‐term Cenozoic cooling trend, it is unknown whether Amazon forests can tolerate air temperature increases, with suggestions that lowland forests lack warm‐adapted taxa, leading to inevitable species losses. In response to this uncertainty, we posit a simple hypothesis: the older the age of a species prior to the Pleistocene, the warmer the climate it has previously survived, with Pliocene (2.6–5 Ma) and late‐Miocene (8–10 Ma) air temperature across Amazonia being similar to 2100 temperature projections under low and high carbon emission scenarios, respectively. Using comparative phylogeographic analyses, we show that 9 of 12 widespread Amazon tree species have Pliocene or earlier lineages (>2.6 Ma), with seven dating from the Miocene (>5.6 Ma) and three >8 Ma. The remarkably old age of these species suggest that Amazon forests passed through warmth similar to 2100 levels and that, in the absence of other major environmental changes, near‐term high temperature‐induced mass species extinction is unlikely. Our study provides evidence that widespread Amazon tree species originated in Neogene time frames, in which atmospheric warmth was similar to conditions expected in 2100 under IPCC projections. This implies a broader thermal tolerance of lowland tropical trees than is assumed by models that predict large‐scale Amazon forest dieback.en_US
dc.publisherUniv. of Chicago Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMolecular Clocken_US
dc.subject.otherThermal Toleranceen_US
dc.subject.otherTropical Treesen_US
dc.subject.otherGlobal Changeen_US
dc.subject.otherEcological Niche Modelsen_US
dc.subject.otherComparative Phylogeographyen_US
dc.subject.otherAmazon Forestsen_US
dc.titleNeogene origins and implied warmth tolerance of Amazon tree speciesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23404439en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96354/1/ece3441.pdf
dc.identifier.doi10.1002/ece3.441en_US
dc.identifier.sourceEcology and Evolutionen_US
dc.identifier.citedreferencePhillips, O., S. L. Lewis, T. R. Baker, K. J. Chao, and N. Higuchi. 2008. The changing Amazon forest. Philos. Trans. R. Soc. B‐Biol. Sci. 363: 1819 – 1827.en_US
dc.identifier.citedreferenceIPCC. 2007. Summary for policy makers. Pp. 1 – 18 in S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller, eds. Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press, Cambridge, UK.en_US
dc.identifier.citedreferenceJaramillo, C., D. Ochoa, L. Contreras, M. Pagani, H. Carvajal‐Ortiz, L. M. Pratt, et al. 2010. Effects of rapid global warming at the Paleocene‐Eocene boundary on neotropical vegetation. Science 330: 957 – 961.en_US
dc.identifier.citedreferenceJones, C., J. Lowe, S. Liddicoat, and R. Betts. 2009. Committed terrestrial ecosystem changes due to climate change. Nat. Geosci. 2: 484 – 487.en_US
dc.identifier.citedreferenceKay, K. M., J. B. Whitall, and S. A. Hodges. 2006. A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evol. Biol. 6: 9 pp.en_US
dc.identifier.citedreferenceKrause, G. H., K. Winter, B. Krause, P. Jahns, M. Garcia, J. Aranda, et al. 2010. High‐temperature tolerance of a tropical tree, Ficus insipida: methodological reassessment and climate change considerations. Funct. Plant Biol. 37: 890 – 900.en_US
dc.identifier.citedreferenceLewis, S. L., J. Lloyd, S. Sitch, E. T. A. Mitchard, and W. F. Laurance. 2009. Changing ecology of tropical forests: evidence and drivers. Annu. Rev. Ecol. Evol. Syst. 40: 529 – 549.en_US
dc.identifier.citedreferenceLewis, S. L., P. M. Brando, O. L. Phillips, G. M. F. van der Heijden, and D. Nepstad. 2011. The 2010 Amazon drought. Science 331: 554 – 554.en_US
dc.identifier.citedreferenceLloyd, J., and G. D. Farquhar. 2008. Effect of rising temperatures and [CO2] on the physiology of tropical forest trees. Philos. Trans. R. Soc. B‐Biol. Sci. 363: 1811 – 1817.en_US
dc.identifier.citedreferenceMalhi, Y., J. T. Roberts, R. A. Betts, T. J. Killeen, W. H. Li, and C. A. Nobre. 2008. Climate change, deforestation, and the fate of the Amazon. Science 319: 169 – 172.en_US
dc.identifier.citedreferenceMaslin, M., Y. Malhi, O. Phillips, and S. Cowling. 2005. New views on an old forest: assessing the longevity, resilience and future of the Amazon rainforest. Trans. Inst. Br. Geogr. 30: 477 – 499.en_US
dc.identifier.citedreferenceMayle, F. E., and M. J. Power. 2008. Impact of a drier Early‐Mid‐Holocene climate upon Amazonian forests. Philos. Trans. R. Soc. B. 363: 1829 – 1838.en_US
dc.identifier.citedreferenceMorley, R. J. 2000. Origin and evolution of tropical rain forests. John Wiley & Sons Ltd, West Sussex.en_US
dc.identifier.citedreferencePoorter, L., L. Bongers, and F. Bongers. 2006. Architecture of 54 moist‐forest tree species: traits, trade‐offs, and functional groups. Ecology 87: 1289 – 1301.en_US
dc.identifier.citedreferenceRammig, A., T. Jupp, K. Thonicke, B. Tietjen, J. Heinke, S. Ostberg, et al. 2010. Estimating the risk of Amazonian forest dieback. New Phytol. 187: 694 – 706.en_US
dc.identifier.citedreferenceRichardson, J. E., R. T. Pennington, T. D. Pennington, and P. M. Hollingsworth. 2001. Rapid diversification of a species‐rich genus of neotropical rain forest trees. Science 293: 2242 – 2245.en_US
dc.identifier.citedreferenceSilva, S., C. Jaramillo, and M. L. Absy. 2010. Neogene palynology of the Solimões basin, Brazilian Amazonia. Palaeontographicaa 283: 1 – 67.en_US
dc.identifier.citedreferenceSmith, S. A., and M. J. Donoghue. 2008. Rates of molecular evolution are linked to life history in flowering plants. Science 322: 86 – 89.en_US
dc.identifier.citedreferenceThomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, and Y. C. Collingham, et al. 2004. Extinction risk from climate change. Nature 427: 145 – 148.en_US
dc.identifier.citedreferenceWay, D. A., and R. Oren. 2010. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol. 30: 669 – 688.en_US
dc.identifier.citedreferenceWillis, K. J., R. M. Bailey, S. A. Bhagwat, and H. J. B. Birks. 2010. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 25: 583 – 591.en_US
dc.identifier.citedreferenceYesson, C., S. J. Russell, T. Parrish, J. W. Dalling, and N. C. Garwood. 2004. Phylogenetic framework for Trema (Celtidaceae). Plant Syst. Evol. 248: 85 – 109.en_US
dc.identifier.citedreferenceYou, Y., M. Huber, R. D. Muller, C. J. Poulsen, and J. Ribbe. 2009. Simulation of the middle Miocene climate optimum. Geophys. Res. Lett. 36: 5 pp.en_US
dc.identifier.citedreferenceZachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686 – 693.en_US
dc.identifier.citedreferenceZachos, J. C., G. R. Dickens, and R. E. Zeebe. 2008. An early Cenozoic perspective on greenhouse warming and carbon‐cycle dynamics. Nature 451: 279 – 283.en_US
dc.identifier.citedreferenceBotkin, D. B., H. Saxe, M. B. Araujo, R. Betts, R. H. W. Bradshaw, T. Cedhagen, et al. 2007. Forecasting the effects of global warming on biodiversity. Bioscience 57: 227 – 236.en_US
dc.identifier.citedreferenceBrumfield, R. T., and A. P. Capparella. 1996. Historical diversification of birds in northwestern South America: a molecular perspective on the role of vicariant events. Evolution 50: 1607 – 1624.en_US
dc.identifier.citedreferenceClement, M., D. Posada, and K. A. Crandall. 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9: 1657 – 1659.en_US
dc.identifier.citedreferenceCoates, A. G., and J. A. Obando. 1996. The geologic evolution of the Central American isthmus. Pp. 21 – 56 in J. B. C. Jackson, A. F. Budd and A. G. Coates, eds. Evolution and environment in tropical America. Univ. of Chicago Press, Chicago.en_US
dc.identifier.citedreferenceColwell, R. K., G. Brehm, C. L. Cardelus, A. C. Gilman, and J. T. Longino. 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322: 258 – 261.en_US
dc.identifier.citedreferenceCorlett, R. T. 2011. Impacts of warming on tropical lowland rainforests. Trends Ecol. Evol. 26: 606 – 613.en_US
dc.identifier.citedreferenceDick, C. W., and M. Heuertz. 2008. The complex biogeographic history of a widespread tropical tree species. Evolution 62: 2760 – 2774.en_US
dc.identifier.citedreferenceDick, C. W., K. Abdul‐Salim, and E. Bermingham. 2003. Molecular systematics reveals cryptic Tertiary diversification of a widespread tropical rainforest tree. Amer. Nat. 162: 691 – 703.en_US
dc.identifier.citedreferenceDick, C. W., R. Condit, and E. Bermingham. 2005. Biogeographic history and the high beta diversity of rainforest trees in Panama. Pp. 259 – 268 in R. Harmon, ed. The Rio chagres: a multidisciplinary profile of a tropical watershed. Springer Publishing Company, New York.en_US
dc.identifier.citedreferenceDick, C. W., E. Bermingham, M. R. Lemes, and R. Gribel. 2007. Extreme long‐distance dispersal of the lowland tropical rainforest tree Ceiba pentandra L. (Malvaceae) in Africa and the Neotropics. Mol. Ecol. 16: 3039 – 3049.en_US
dc.identifier.citedreferenceDoughty, C. E., and M. L. Goulden. 2008. Are tropical forests near a high temperature threshold? J. Geophys. Res. Biogeosci. 113: 1 – 12.en_US
dc.identifier.citedreferenceDrummond, A. J., and A. Rambaut. 2007. Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7: 214.en_US
dc.identifier.citedreferenceDrummond, A. J., S. Y. W. Ho, M. J. Phillips, and A. Rambaut. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4: e88.en_US
dc.identifier.citedreferenceFeeley, K. J., and M. R. Silman. 2010. Biotic attrition from tropical forests correcting for truncated temperature niches. Glob. Change Biol. 16: 1830 – 1836.en_US
dc.identifier.citedreferenceGalbraith, D., P. E. Levy, S. Sitch, C. Huntingford, P. Cox, M. Williams, et al. 2010. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytol. 187: 647 – 665.en_US
dc.identifier.citedreferenceHaywood, A. M., A. Ridgwell, D. J. Lunt, D. J. Hill, M. J. Pound, H. J. Dowsett, et al. 2011. Are there pre‐Quaternary geological analogues for a future greenhouse warming? Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369: 933 – 956.en_US
dc.identifier.citedreferenceHelmens, K. F., and T. van der Hammen. 1994. The Pliocene and Quaternary of the high plain of Bogotá (Colombia): a history of tectonic uplift, basin development and climatic change. Quatern. Int. 21: 41 – 61.en_US
dc.identifier.citedreferenceHoorn, C., F. P. Wesselingh, H. ter Steege, M. A. Bermudez, A. Mora, J. Sevink, et al. 2010. Amazonia through time: andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927 – 931.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.