Show simple item record

Developmental trends in auditory processing can provide early predictions of language acquisition in young infants

dc.contributor.authorChonchaiya, Weerasaken_US
dc.contributor.authorTardif, Twilaen_US
dc.contributor.authorMai, Xiaoqinen_US
dc.contributor.authorXu, Linen_US
dc.contributor.authorLi, Mingyanen_US
dc.contributor.authorKaciroti, Nikoen_US
dc.contributor.authorKileny, Paul R.en_US
dc.contributor.authorShao, Jieen_US
dc.contributor.authorLozoff, Betsyen_US
dc.date.accessioned2013-03-05T18:17:24Z
dc.date.available2014-05-01T14:28:09Zen_US
dc.date.issued2013-03en_US
dc.identifier.citationChonchaiya, Weerasak; Tardif, Twila; Mai, Xiaoqin; Xu, Lin; Li, Mingyan; Kaciroti, Niko; Kileny, Paul R.; Shao, Jie; Lozoff, Betsy (2013). "Developmental trends in auditory processing can provide early predictions of language acquisition in young infants." Developmental Science 16(2): 159-172. <http://hdl.handle.net/2027.42/96687>en_US
dc.identifier.issn1363-755Xen_US
dc.identifier.issn1467-7687en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96687
dc.description.abstractAuditory processing capabilities at the subcortical level have been hypothesized to impact an individual's development of both language and reading abilities. The present study examined whether auditory processing capabilities relate to language development in healthy 9‐month‐old infants. Participants were 71 infants (31 boys and 40 girls) with both Auditory Brainstem Response (ABR) and language assessments. At 6 weeks and/or 9 months of age, the infants underwent ABR testing using both a standard hearing screening protocol with 30 dB clicks and a second protocol using click pairs separated by 8, 16, and 64‐ms intervals presented at 80 dB . We evaluated the effects of interval duration on ABR latency and amplitude elicited by the second click. At 9 months, language development was assessed via parent report on the Chinese Communicative Development Inventory ‐ Putonghua version (CCDI‐P). Wave V latency z ‐scores of the 64‐ms condition at 6 weeks showed strong direct relationships with Wave V latency in the same condition at 9 months. More importantly, shorter Wave V latencies at 9 months showed strong relationships with the CCDI‐P composite consisting of phrases understood, gestures, and words produced. Likewise, infants who had greater decreases in Wave V latencies from 6 weeks to 9 months had higher CCDI‐P composite scores. Females had higher language development scores and shorter Wave V latencies at both ages than males. Interestingly, when the ABR Wave V latencies at both ages were taken into account, the direct effects of gender on language disappeared. In conclusion, these results support the importance of low‐level auditory processing capabilities for early language acquisition in a population of typically developing young infants. Moreover, the auditory brainstem response in this paradigm shows promise as an electrophysiological marker to predict individual differences in language development in young children. Auditory processing capabilities at the subcortical level have been hypothesized to impact an individual's development of both language and reading abilities. The present study examined whether auditory processing capabilities relate to language development in healthy 9‐month‐old infants. Participants were 71 infants (31 boys and 40 girls) with both Auditory Brainstem Response (ABR) and language assessments.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherDepartment of Health and Human Servicesen_US
dc.titleDevelopmental trends in auditory processing can provide early predictions of language acquisition in young infantsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPediatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23432827en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96687/1/desc12012.pdf
dc.identifier.doi10.1111/desc.12012en_US
dc.identifier.sourceDevelopmental Scienceen_US
dc.identifier.citedreferencePhillips, D.P. ( 1993 ). Neural representation of stimulus times in the primary auditory cortex. Annals of the New York Academy of Sciences, 682, 104 – 118.en_US
dc.identifier.citedreferenceLasky, R.E., & Rupert, A.L. ( 1982 ). Temporal masking of auditory evoked brainstem responses in human newborns and adults. Hearing Research, 6 ( 3 ), 315 – 334.en_US
dc.identifier.citedreferenceLeppänen, P., Hämäläinen, J., Salminen, H., Eklund, K., Guttorm, T., Lohvansuu, K., Puolakanaho, A., & Lyytinen, H. ( 2010 ). Newborn brain event‐related potentials revealing atypical processing of sound frequency and the subsequent association with later literacy skills in children with familial dyslexia. Cortex, 46 ( 10 ), 1362 – 1376.en_US
dc.identifier.citedreferenceLooker, A.C., Dallman, P.R., Carroll, M.D., Gunter, E.W., & Johnson, C.L. ( 1997 ). Prevalence of iron deficiency in the United States. Journal of the American Medical Association, 277 ( 12 ), 973 – 976.en_US
dc.identifier.citedreferenceLovas, G.S. ( 2011 ). Gender and patterns of language development in mother–toddler and father–toddler dyads. First Language, 31, 83 – 108.en_US
dc.identifier.citedreferenceMarler, J.A., & Champlin, C.A. ( 2005 ). Sensory processing of backward‐masking signals in children with language‐learning impairment as assessed with the auditory brainstem response. Journal of Speech, Language, and Hearing Research, 48 ( 1 ), 189 – 203.en_US
dc.identifier.citedreferenceMolfese, D.L. ( 1989 ). The use of auditory evoked responses recorded from newborn infants to predict later language skills. Birth Defects Original Article Series, 25 ( 6 ), 47 – 62.en_US
dc.identifier.citedreferenceMolfese, D.L. ( 2000 ). Predicting dyslexia at 8 years of age using neonatal brain responses. Brain and Language, 72 ( 3 ), 238 – 245.en_US
dc.identifier.citedreferenceMoore, J.K., & Linthicum, F.H. Jr ( 2007 ). The human auditory system: a timeline of development. International Journal of Audiology, 46 ( 9 ), 460 – 478.en_US
dc.identifier.citedreferenceRivera‐Gaxiola, M., Silva‐Pereyra, J., & Kuhl, P.K. ( 2005 ). Brain potentials to native and non‐native speech contrasts in 7‐ and 11‐month‐old American infants. Developmental Science, 8, 162 – 172.en_US
dc.identifier.citedreferenceShucard, D.W., Shucard, J.L., & Thomas, D.G. ( 1987 ). Auditory event‐related potentials in waking infants and adults: a developmental perspective. Electroencephalography and Clinical Neurophysiology, 68 ( 4 ), 303 – 310.en_US
dc.identifier.citedreferenceSong, J.H., Banai, K., & Kraus, N. ( 2008 ). Brainstem timing deficits in children with learning impairment may result from corticofugal origins. Audiology and Neuro‐Otology, 13 ( 5 ), 335 – 344.en_US
dc.identifier.citedreferenceSong, J.H., Nicol, T., & Kraus, N. ( 2011 ). Test–retest reliability of the speech‐evoked auditory brainstem response. Clinical Neurophysiology, 122 ( 2 ), 346 – 355.en_US
dc.identifier.citedreferenceTallal, P. ( 2004 ). Improving language and literacy is a matter of time. Nature Reviews Neuroscience, 5 ( 9 ), 721 – 728.en_US
dc.identifier.citedreferenceTardif, T., Fletcher, P., Liang, W., & Kaciroti, N. ( 2009 ). Early vocabulary development in Mandarin (Putonghua) and Cantonese. Journal of Child Language, 36 ( 5 ), 1115 – 1144.en_US
dc.identifier.citedreferenceTardif, T., Fletcher, P., Zhang, Z.X., Liang, W.L., & Zuo, Q.H. ( 2008 ). The Chinese Communicative Development Inventory (Putonghua and Cantonese versions): Manual, forms, and norms. Peking University Medical Press.en_US
dc.identifier.citedreferenceTomblin, J.B., Records, N.L., Buckwalter, P., Zhang, X., Smith, E., & O'Brien, M. ( 1997 ). Prevalence of specific language impairment in kindergarten children. Journal of Speech, Language, and Hearing Research, 40 ( 6 ), 1245 – 1260.en_US
dc.identifier.citedreferenceVan Riper, L.A., & Kileny, P.R. ( 1999 ). ABR hearing screening for high‐risk infants. American Journal of Otology, 20 ( 4 ), 516 – 521.en_US
dc.identifier.citedreferenceWalton, J., Orlando, M., & Burkard, R. ( 1999 ). Auditory brainstem response forward‐masking recovery functions in older humans with normal hearing. Hearing Research, 127, 86 – 94.en_US
dc.identifier.citedreferenceWang, X. ( 2007 ). Neural coding strategies in auditory cortex. Hearing Research, 229 ( 1–2 ), 81 – 93.en_US
dc.identifier.citedreferenceWerker, J.F., & Tees, R.C. ( 1984 ). Phonemic and phonetic factors in adult cross‐language speech perception. Journal of the Acoustical Society of America, 75 ( 6 ), 1866 – 1878.en_US
dc.identifier.citedreferenceWible, B., Nicol, T., & Kraus, N. ( 2004 ). Atypical brainstem representation of onset and formant structure of speech sounds in children with language‐based learning problems. Biological Psychology, 67 ( 3 ), 299 – 317.en_US
dc.identifier.citedreferenceWible, B., Nicol, T., & Kraus, N. ( 2005 ). Correlation between brainstem and cortical auditory processes in normal and language‐impaired children. Brain, 128 ( Pt 2 ), 417 – 423.en_US
dc.identifier.citedreferenceAbbas, P.J., & Gorga, M.P. ( 1981 ). AP responses in forward‐masking paradigms and their relationship to responses of auditory‐nerve fibers. Journal of the Acoustical Society of America, 69 ( 2 ), 492 – 499.en_US
dc.identifier.citedreferenceAlgarin, C., Peirano, P., Garrido, M., Pizarro, F., & Lozoff, B. ( 2003 ). Iron deficiency anemia in infancy: long‐lasting effects on auditory and visual system functioning. Pediatric Research, 53 ( 2 ), 217 – 223.en_US
dc.identifier.citedreferenceBanai, K., Nicol, T., Zecker, S.G., & Kraus, N. ( 2005 ). Brainstem timing: implications for cortical processing and literacy. Journal of Neuroscience, 25 ( 43 ), 9850 – 9857.en_US
dc.identifier.citedreferenceBasu, M., Krishnan, A., & Weber‐Fox, C. ( 2010 ). Brainstem correlates of temporal auditory processing in children with specific language impairment. Developmental Science, 13 ( 1 ), 77 – 91.en_US
dc.identifier.citedreferenceBenasich, A.A., & Tallal, P. ( 2002 ). Infant discrimination of rapid auditory cues predicts later language impairment. Behavioural Brain Research, 136 ( 1 ), 31 – 49.en_US
dc.identifier.citedreferenceBenasich, A.A., Thomas, J.J., Choudhury, N., & Leppänen, P.H. ( 2002 ). The importance of rapid auditory processing abilities to early language development: evidence from converging methodologies. Developmental Psychobiology, 40 ( 3 ), 278 – 292.en_US
dc.identifier.citedreferenceBishop, D.V.M., & McArthur, G.M. ( 2004 ). Immature cortical responses to auditory stimuli in specific language impairment: evidence from ERPs to rapid tone sequences. Developmental Science, 7 ( 4 ), F11 – F18.en_US
dc.identifier.citedreferenceBoets, B., Vandermosten, M., Poelmans, H., Luts, H., Wouters, J., & Ghesquiere, P. ( 2011 ). Preschool impairments in auditory processing and speech perception uniquely predict future reading problems. Research in Developmental Disabilities, 32 ( 2 ), 560 – 570.en_US
dc.identifier.citedreferenceBornstein, M.H., Hahn, C.‐S., & Haynes, O.M. ( 2004 ). Specific and general language performance across early childhood: stability and gender considerations. First Language, 24, 267 – 304.en_US
dc.identifier.citedreferenceCenters for Disease Control and Prevention ( 1998 ). Recommendations to prevent and control iron deficiency in the United States. Morbidity and Mortality Weekly Report Recommendations and Reports, 47 ( RR‐3 ), 1 – 29.en_US
dc.identifier.citedreferenceCenters for Disease Control and Prevention ( 2001 ). Healthy people 2000: National Health Promotion and Disease Prevention Objectives Final Review. Hyattsville, MD: Department of Health and Human Services.en_US
dc.identifier.citedreferenceChoudhury, N., & Benasich, A.A. ( 2011 ). Maturation of auditory evoked potentials from 6 to 48 months: prediction to 3 and 4 year language and cognitive abilities. Clinical Neurophysiology, 122 ( 2 ), 320 – 338.en_US
dc.identifier.citedreferenceChoudhury, N., Leppänen, P.H., Leevers, H.J., & Benasich, A.A. ( 2007 ). Infant information processing and family history of specific language impairment: converging evidence for RAP deficits from two paradigms. Developmental Science, 10 ( 2 ), 213 – 236.en_US
dc.identifier.citedreferenceCunningham, J., Nicol, T., Zecker, S.G., Bradlow, A., & Kraus, N. ( 2001 ). Neurobiologic responses to speech in noise in children with learning problems: deficits and strategies for improvement. Clinical Neurophysiology, 112 ( 5 ), 758 – 767.en_US
dc.identifier.citedreferenceDespland, P.A., & Galambos, R. ( 1980 ). The auditory brainstem response (ABR) is a useful diagnostic tool in the intensive care nursery. Pediatric Research, 14 ( 2 ), 154 – 158.en_US
dc.identifier.citedreferenceEl‐Kashlan, H.K., Eisenmann, D., & Kileny, P.R. ( 2000 ). Auditory brain stem response in small acoustic neuromas. Ear and Hearing, 21 ( 3 ), 257 – 262.en_US
dc.identifier.citedreferenceEspy, K.A., Molfese, D.L., Molfese, V.J., & Modglin, A. ( 2004 ). Development of auditory event‐related potentials in young children and relations to word‐level reading abilities at age 8 years. Annals of Dyslexia, 54 ( 1 ), 9 – 38.en_US
dc.identifier.citedreferenceFenson, L., Dale, P.S., Reznick, J.S., Bates, E., Thal, D.J., & Pethick, S.J. ( 1994 ). Variability in early communicative development. Monographs of the Society for Research in Child Development, 59 ( 5, Serial No. 242 ).en_US
dc.identifier.citedreferenceFenson, L., Dale, P., Reznick, J.S., Thal, D., Bates, E., Hartung, J., Pethick, S., & Reilly, J.S. ( 1993 ). MacArthur CommunicativeDevelopment Inventories: User's guide and technical manual. San Diego, CA: Singular Publishing Group.en_US
dc.identifier.citedreferenceFriederici, A.D., Pannekamp, A., Partsch, C.‐J., Ulmen, U., Oehler, K., Schmitzler, R., & Hesse, V. ( 2008 ). Sex hormone testosterone affects language organization in infant brain. Cognitive Neuroscience and Neuropsychology, 29, 283 – 286.en_US
dc.identifier.citedreferenceHanlon, H.W., Thatcher, R.W., & Cline, M.J. ( 1999 ). Gender differences in the development of EEG coherence in normal children. Developmental Neuropsychology, 16, 479 – 506.en_US
dc.identifier.citedreferenceHecox, K., & Galambos, R. ( 1974 ). Brain stem auditory evoked responses in human infants and adults. Archives of Otolaryngology, 99 ( 1 ), 30 – 33.en_US
dc.identifier.citedreferenceHornickel, J., Chandrasekaran, B., Zecker, S., & Kraus, N. ( 2011 ). Auditory brainstem measures predict reading and speech‐in‐noise perception in school‐aged children. Behavioural Brain Research, 216 ( 2 ), 597 – 605.en_US
dc.identifier.citedreferenceHuttenlocher, J., Haight, W., Bryk, A., Seltzer, M., & Lyons, T. ( 1991 ). Early vocabulary growth: relation to language input and gender. Developmental Psychology, 27 ( 2 ), 236 – 248.en_US
dc.identifier.citedreferenceJacobson, J.T. ( 1985 ). Normative aspects of the pediatric auditory brainstem response. Journal of Otolaryngology Supplement, 14, 7 – 11.en_US
dc.identifier.citedreferenceJiang, Z.D. ( 1995 ). Maturation of the auditory brainstem in low risk‐preterm infants: a comparison with age‐matched full term infants up to 6 years. Early Human Development, 42 ( 1 ), 49 – 65.en_US
dc.identifier.citedreferenceJohnson, K.L., Nicol, T., Zecker, S.G., & Kraus, N. ( 2008 ). Developmental plasticity in the human auditory brainstem. Journal of Neuroscience, 28 ( 15 ), 4000 – 4007.en_US
dc.identifier.citedreferenceKing, C., Warrier, C.M., Hayes, E., & Kraus, N. ( 2002 ). Deficits in auditory brainstem pathway encoding of speech sounds in children with learning problems. Neuroscience Letters, 319 ( 2 ), 111 – 115.en_US
dc.identifier.citedreferenceKrishnan, A., & Gandour, J.T. ( 2009 ). The role of the auditory brainstem in processing linguistically‐relevant pitch patterns. Brain and Language, 110, 135 – 148.en_US
dc.identifier.citedreferenceKuhl, P.K., Conboy, B.T., Coffey‐Corina, S., Padden, D., Rivera‐Gaxiola, M., & Nelson, T. ( 2008 ). Phonetic learning as a pathway to language: new data and native language magnet theory expanded (NLM‐e). Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 363 ( 1493 ), 979 – 1000.en_US
dc.identifier.citedreferenceLasky, R.E. ( 1991 ). The effects of rate and forward masking on human adult and newborn auditory evoked brainstem response thresholds. Developmental Psychobiology, 24 ( 1 ), 51 – 64.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.