Show simple item record

The tomato cis– prenyltransferase gene family

dc.contributor.authorAkhtar, Tariq A.en_US
dc.contributor.authorMatsuba, Yukien_US
dc.contributor.authorSchauvinhold, Inesen_US
dc.contributor.authorYu, Gengen_US
dc.contributor.authorLees, Hazel A.en_US
dc.contributor.authorKlein, Samuel E.en_US
dc.contributor.authorPichersky, Eranen_US
dc.date.accessioned2013-03-05T18:17:41Z
dc.date.available2014-04-02T15:08:07Zen_US
dc.date.issued2013-02en_US
dc.identifier.citationAkhtar, Tariq A.; Matsuba, Yuki; Schauvinhold, Ines; Yu, Geng; Lees, Hazel A.; Klein, Samuel E.; Pichersky, Eran (2013). "The tomato cis– prenyltransferase gene family." The Plant Journal 73(4): 640-652. <http://hdl.handle.net/2027.42/96709>en_US
dc.identifier.issn0960-7412en_US
dc.identifier.issn1365-313Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/96709
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCis– Prenyltransferaseen_US
dc.subject.otherPolyisoprenoiden_US
dc.subject.otherPolyprenolen_US
dc.subject.otherDolicholen_US
dc.subject.otherMonoterpeneen_US
dc.subject.otherS Olanum Lycopersicumen_US
dc.titleThe tomato cis– prenyltransferase gene familyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23134568en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96709/1/tpj12063-sup-0004-FigureS4.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96709/2/tpj12063-sup-0005-FigureS5.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96709/3/tpj12063-sup-0002-FigureS2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96709/4/tpj12063-sup-0003-FigureS3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96709/5/tpj12063-sup-0001-FigureS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96709/6/tpj12063.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/96709/7/tpj12063-sup-0006-TableS1.pdf
dc.identifier.doi10.1111/tpj.12063en_US
dc.identifier.sourceThe Plant Journalen_US
dc.identifier.citedreferenceSchulbach, M.C., Brennan, P.J. and Crick, D.C. ( 2000 ) Identification of a short (C15) chain Z –isoprenyl diphosphate synthase and a homologous long (C50) chain isoprenyl diphosphate synthase in Mycobacterium tuberculosis. J. Biol. Chem. 275, 22876 – 22881.en_US
dc.identifier.citedreferenceSakaihara, T., Honda, A., Tateyama, S. and Sagami, H. ( 2000 ) Subcellular fractionation of polyprenyl diphosphate synthase activities responsible for the syntheses of polyprenols and dolichols in spinach leaves. J. Biochem. 128, 1073 – 1078.en_US
dc.identifier.citedreferenceSallaud, C., Rontein, D., Onillon, S. et   al. ( 2009 ) A novel pathway for sesquiterpene biosynthesis from Z, Z –farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell 21, 301 – 317.en_US
dc.identifier.citedreferenceSanmiya, K., Ueno, O., Matsuoka, M. and Yamamoto, N. ( 1999 ) Localization of farnesyl diphosphate synthase in chloroplasts. Plant Cell Physiol. 40, 348 – 354.en_US
dc.identifier.citedreferenceSato, M., Sato, K., Nishikawa, S., Hirata, A., Kato, J. and Nakano, A. ( 1999 ) The yeast RER2 gene, identified by endoplasmic reticulum protein localization mutations, encodes cis– prenyltransferase, a key enzyme in dolichol synthesis. Mol. Cell. Biol. 19, 471 – 483.en_US
dc.identifier.citedreferenceSchenk, B., Fernandez, F. and Waechter, C.J. ( 2001 ) The inside and outside of dolichyl phosphate biosynthesis and recycling in the endoplasmic reticulum. Glycobiology 11, 61 – 70.en_US
dc.identifier.citedreferenceSchilmiller, A.L., Schauvinhold, I., Larson, M., Xu, R., Charbonneau, A.L., Schmidt, A., Wilkerson, C., Last, R.L. and Pichersky, E. ( 2009 ) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc. Natl Acad. Sci. USA 106, 10865 – 10870.en_US
dc.identifier.citedreferenceSchilmiller, A.L., Miner, D.P., Larson, M., McDowell, E., Gang, D.R., Wilkerson, C. and Last, R.L. ( 2010 ) Studies of a biochemical factory: tomato trichome deep expressed sequence tag sequencing and proteomics. Plant Physiol. 153, 1212 – 1223.en_US
dc.identifier.citedreferenceSchmidt, T., Lenders, M., Hillebrand, A., van Deenen, N., Munt, O., Reichelt, R., Eisenreich, W., Fischer, R., Prüfer, D. and Gronover, C.S. ( 2010 ) Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz. BMC Biochem. 11, 11.en_US
dc.identifier.citedreferenceShridas, P., Rush, J.S. and Waechter, C.J. ( 2003 ) Identification and characterization of a cDNA encoding a long‐chain cis– isoprenyltranferase involved in dolichyl monophosphate biosynthesis in the ER of brain cells. Biochem. Biophys. Res. Commun. 312, 1349 – 1356.en_US
dc.identifier.citedreferenceSkorupinska‐Tudek, K., Wojcik, J. and Swiezewska, E. ( 2008 ) Polyisoprenoid alcohols – recent results of structural studies. Chem. Rec. 8, 33 – 45.en_US
dc.identifier.citedreferenceSpurgeon, S.L., Sathyamoorthy, N. and Porter, J.W. ( 1984 ) Isopentenyl pyrophosphate isomerase and prenyltransferase from tomato fruit plastids. Arch. Biochem. Biophys. 230, 446 – 454.en_US
dc.identifier.citedreferenceSurmacz, L. and Swiezewska, E. ( 2011 ) Polyisoprenoids – secondary metabolites or physiologically important superlipids? Biochem. Biophys. Res. Commun. 407, 627 – 632.en_US
dc.identifier.citedreferenceSwiezewska, E. and Danikiewicz, W. ( 2005 ) Polyisoprenoids: structure, biosynthesis and function. Prog. Lipid Res. 44, 235 – 258.en_US
dc.identifier.citedreferenceSwiezewska, E., Sasak, W., Mańkowski, T., Jankowski, W., Vogtman, T., Krajewska, I., Hertel, J., Skoczylas, E. and Chojnacki, T. ( 1994 ) The search for plant polyprenols. Acta Biochim. Pol. 41, 221 – 260.en_US
dc.identifier.citedreferenceTamura, K., Dudley, J., Nei, M. and Kumar, S. ( 2007 ) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596 – 1599.en_US
dc.identifier.citedreferenceTzfira, T., Tian, G.W., Lacroix, B., Vyas, S., Li, J., Leitner‐Dagan, Y., Krichevsky, A., Taylor, T., Vainstein, A. and Citovsky, V. ( 2005 ) pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol. Biol. 57, 503 – 516.en_US
dc.identifier.citedreferenceVigo, C., Grossman, S.H. and Drost‐Hansen, W. ( 1984 ) Interaction of dolichol and dolichyl phosphate with phospholipid bilayers. Biochim. Biophys. Acta 774, 221 – 226.en_US
dc.identifier.citedreferenceVincent, F., Molin, D.D., Weiner, R.M., Bourne, Y. and Henrissat, B. ( 2010 ) Structure of a polyisoprenoid binding domain from Saccharophagus degradans implicated in plant cell wall breakdown. FEBS Lett. 584, 1577 – 1584.en_US
dc.identifier.citedreferenceWu, F.H., Shen, S.C., Lee, L.Y., Lee, S.H., Chan, M.T. and Lin, C.S. ( 2009 ) Tape– Arabidopsis sandwich – a simpler Arabidopsis protoplast isolation method. Plant Methods, 5, 16.en_US
dc.identifier.citedreferenceYtterberg, A.J., Peltier, J.B. and van Wijk, K.J. ( 2006 ) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol. 140, 984 – 997.en_US
dc.identifier.citedreferenceYu, L., Peña‐Castillo, L., Mnaimneh, S., Hughes, T.R. and Brown, G.W. ( 2006 ) A survey of essential gene function in the yeast cell division cycle. Mol. Biol. Cell 11, 4736 – 4747.en_US
dc.identifier.citedreferenceYu, G., Nguyen, T.T., Guo, Y., Schauvinhold, I., Auldridge, M.E., Bhuiyan, N., Ben‐Israel, I., Iijima, Y., Fridman, E., Noel, J.P. and Pichersky, E. ( 2010 ) Enzymatic functions of wild tomato methylketone synthases 1 and 2. Plant Physiol. 154, 67 – 77.en_US
dc.identifier.citedreferenceZhang, H., Ohyama, K., Boudet, J., Chen, Z., Yang, J., Zhang, M., Muranaka, T., Maurel, C., Zhu, J.K. and Gong, Z. ( 2008 ) Dolichol biosynthesis and its effects on the unfolded protein response and abiotic stress resistance in Arabidopsis. Plant Cell, 20, 1879 – 1898.en_US
dc.identifier.citedreferenceZhou, G.P. and Troy, F.A. II ( 2003 ) Characterization by NMR and molecular modeling of the binding of polyisoprenols and polyisoprenyl recognition sequence peptides: 3D structure of the complexes reveals sites of specific interactions. Glycobiology, 13, 51 – 71.en_US
dc.identifier.citedreferenceAmbo, T., Noike, M., Kurokawa, H. and Koyama, T. ( 2008 ) Cloning and functional analysis of novel short‐chain cis– prenyltransferases. Biochem. Biophys. Res. Commun. 375, 536 – 540.en_US
dc.identifier.citedreferenceAsawatreratanakul, K., Zhang, Y.W., Wititsuwannakul, D., Wititsuwannakul, R., Takahashi, S., Rattanapittayaporn, A. and Koyama, T. ( 2003 ) Molecular cloning, expression and characterization of cDNA encoding cis– prenyltransferases from Hevea brasiliensis. A key factor participating in natural rubber biosynthesis. Eur. J. Biochem. 270, 4671 – 4680.en_US
dc.identifier.citedreferenceAustin, J.R. II, Frost, E., Vidi, P.A., Kessler, F. and Staehelin, L.A. ( 2006 ) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell, 18, 1693 – 1703.en_US
dc.identifier.citedreferenceBajda, A., Chojnacki, T., Hertel, J., Swiezewska, E., Wojcik, J., Kaczkowska, A., Marczewski, A., Bojarczuk, T., Karolewski, P. and Oleksyn, J. ( 2005 ) Light conditions alter accumulation of long chain polyprenols in leaves of trees and shrubs throughout the vegetation season. Acta Biochim. Pol. 52, 233 – 241.en_US
dc.identifier.citedreferenceBonk, M., Hoffmann, B., Von Lintig, J., Schledz, M., Al–Babili, S., Hobeika, E., Kleinig, H. and Beyer, P. ( 1997 ) Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly. Eur. J. Biochem. 247, 942 – 950.en_US
dc.identifier.citedreferenceBurke, C.C., Wildung, M.R. and Croteau, R. ( 1999 ) Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proc. Natl Acad. Sci. USA, 96, 13062 – 13067.en_US
dc.identifier.citedreferenceCheniclet, C., Rafia, F., Saint‐Guily, A., Verna, A. and Carde, J.P. ( 1992 ) Localization of the enzyme geranylgeranylpyrophosphate synthase in Capsicum fruits by immunogold cytochemistry after conventional chemical fixation or quick‐freezing by freeze‐substitution. Labelling evolution during fruit ripening. Biol. Cell, 75, 145 – 154.en_US
dc.identifier.citedreferenceChojnacki, T. and Vogtman, T. ( 1984 ) The occurrence and seasonal distribution of C50–C60 polyprenols and of C100 and similar long‐chain polyprenols in leaves of plants. Acta Biochim. Pol. 31, 115 – 126.en_US
dc.identifier.citedreferenceCiepichal, E., Jemiola‐Rzeminska, M., Hertel, J., Swiezewska, E. and Strzalka, K. ( 2011 ) Configuration of polyisoprenoids affects the permeability and thermotropic properties of phospholipid/polyisoprenoid model membranes. Chem. Phys. Lipids 164, 300 – 306.en_US
dc.identifier.citedreferenceCunillera, N., Arró, M., Forés, O., Manzano, D. and Ferrer, A. ( 2000 ) Characterization of dehydrodolichyl diphosphate synthase of Arabidopsis thaliana, a key enzyme in dolichol biosynthesis. FEBS Lett. 477, 170 – 174.en_US
dc.identifier.citedreferencevan Der Hoeven, R.S., Monforte, A.J., Breeden, D., Tanksley, S.D. and Steffens, J.C. ( 2000 ) Genetic control and evolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L. hirsutum. Plant Cell, 12, 2283 – 2294.en_US
dc.identifier.citedreferenceDucluzeau, A.L., Wamboldt, Y., Elowsky, C.G., Mackenzie, S.A., Schuurink, R.C. and Basset, G.J. ( 2012 ) Gene network reconstruction identifies the authentic trans– prenyl diphosphate synthase that makes the solanesyl moiety of ubiquinone–9 in Arabidopsis. Plant J. 69, 366 – 375.en_US
dc.identifier.citedreferenceEugeni‐Piller, L., Besagni, C., Ksas, B., Rumeau, D., Bréhélin, C., Glauser, G., Kessler, F. and Havaux, M. ( 2011 ) Chloroplast lipid droplet type II NAD(P)H quinone oxidoreductase is essential for prenylquinone metabolism and vitamin K1 accumulation. Proc. Natl Acad. Sci. USA, 108, 14354 – 14359.en_US
dc.identifier.citedreferenceFalara, V., Akhtar, T.A., Nguyen, T.T.H. et al. ( 2011 ) The tomato terpene synthase gene family. Plant Physiol. 157, 770 – 789.en_US
dc.identifier.citedreferenceFoster, T.M., Lough, T.J., Emerson, S.J., Lee, R.H., Bowman, J.L., Forster, R.L. and Lucas, W.J. ( 2002 ) A surveillance system regulates selective entry of RNA into the shoot apex. Plant Cell, 14, 1497 – 1508.en_US
dc.identifier.citedreferenceFridman, E., Wang, J., Iijima, Y., Froehlich, J.E., Gang, D.R., Ohlrogge, J. and Pichersky, E. ( 2005 ) Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones. Plant Cell, 17, 1252 – 1267.en_US
dc.identifier.citedreferenceFujihashi, M., Zhang, Y.W., Higuchi, Y., Li, X.Y., Koyama, T. and Miki, K. ( 2001 ) Crystal structure of cis –prenyl chain elongating enzyme, undecaprenyl diphosphate synthase. Proc. Natl Acad. Sci. USA, 98, 4337 – 4342.en_US
dc.identifier.citedreferenceGietz, R.D. and Schiestl, R.H. ( 2007 ) Large‐scale high‐efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 38 – 41.en_US
dc.identifier.citedreferenceHajdukiewicz, P., Svab, Z. and Maliga, P. ( 1994 ) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989 – 994.en_US
dc.identifier.citedreferenceHarrison, K.D., Park, E.J., Gao, N., Kuo, A., Rush, J.S., Waechter, C.J., Lehrman, M.A. and Sessa, W.C. ( 2011 ) Nogo–B receptor is necessary for cellular dolichol biosynthesis and protein N– glycosylation. EMBO J. 30, 2490 – 2500.en_US
dc.identifier.citedreferenceHirooka, Y., Bamba, T., Fukusaki, E. and Kobayashi, A. ( 2003 ) Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase. Biochem. J. 370, 679 – 686.en_US
dc.identifier.citedreferenceKera, K., Takahashi, S., Sutoh, T., Koyama, T. and Nakayama, T. ( 2012 ) Identification and characterization of a cis, trans– mixed heptaprenyl diphosphate synthase from Arabidopsis thaliana. FEBS J. 279, 3813 – 3827.en_US
dc.identifier.citedreferenceKharel, Y. and Koyama, T. ( 2003 ) Molecular analysis of cis– prenyl chain elongating enzymes. Nat. Prod. Rep. 20, 111 – 118.en_US
dc.identifier.citedreferenceKharel, Y., Takahashi, S., Yamashita, S. and Koyama, T. ( 2006 ) Manipulation of prenyl chain length determination mechanism of cis‐prenyltransferases. FEBS J. 273, 647 – 657.en_US
dc.identifier.citedreferenceKirby, J. and Keasling, J.D. ( 2009 ) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu. Rev. Plant Biol. 60, 335 – 355.en_US
dc.identifier.citedreferenceLange, B.M. and Ghassemian, M. ( 2003 ) Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol. Biol. 51, 925 – 948.en_US
dc.identifier.citedreferenceLiang, P.H., Ko, T.P. and Wang, A.H. ( 2002 ) Structure, mechanism, and function of prenyltransferases. Eur. J. Biochem. 269, 3339 – 3354.en_US
dc.identifier.citedreferenceLiu, M.C., Wang, B.J., Huang, J.K. and Wang, C.S. ( 2011 ) Expression, localization and function of a cis– prenyltransferase in the tapetum and microspores of lily anthers. Plant Cell Physiol. 52, 1487 – 1500.en_US
dc.identifier.citedreferenceMcGarvey, D.J. and Croteau, R. ( 1995 ) Terpenoid metabolism. Plant Cell 7, 1015 – 1026.en_US
dc.identifier.citedreferenceNelson, B.K., Cai, X. and Nebenführ, A. ( 2007 ) A multicolored set of in vivo organelle markers for co‐localization studies in Arabidopsis and other plants. Plant J. 51, 1126 – 1136.en_US
dc.identifier.citedreferenceOh, S.K., Han, K.H., Ryu, S.B. and Kang, H. ( 2000 ) Molecular cloning, expression, and functional analysis of a cis –prenyltransferase from Arabidopsis thaliana: implications in rubber biosynthesis. J. Biol. Chem. 275, 18482 – 18488.en_US
dc.identifier.citedreferencePhillips, M.A., D'Auria, J.C., Gershenzon, J. and Pichersky, E. ( 2008 ) The Arabidopsis thaliana type I isopentenyl diphosphate isomerases are targeted to multiple subcellular compartments and have overlapping functions in isoprenoid biosynthesis. Plant Cell 20, 677 – 696.en_US
dc.identifier.citedreferencePost, J., van Deenen, N., Fricke, J. et al. ( 2012 ) Laticifer‐specific cis –prenyltransferase silencing affects the rubber, triterpene, and inulin content of Taraxacum brevicorniculatum. Plant Physiol. 158, 1406 – 1417.en_US
dc.identifier.citedreferenceRodríguez‐Concepción, M. and Boronat, A. ( 2002 ) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 130, 1079 – 1089.en_US
dc.identifier.citedreferenceRush, J.S., Matveev, S., Guan, Z., Raetz, C.R.H. and Waechter, C.J. ( 2010 ) Expression of functional bacterial undecaprenyl pyrophosphate synthase in the yeast rer2 ∆ mutant and CHO cells. Glycobiology, 20, 1585 – 1593.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.