Show simple item record

A global multispecies single‐fluid MHD study of the plasma interaction around Venus

dc.contributor.authorMa, Y. J.en_US
dc.contributor.authorNagy, A. F.en_US
dc.contributor.authorRussell, C. T.en_US
dc.contributor.authorStrangeway, R. J.en_US
dc.contributor.authorWei, H. Y.en_US
dc.contributor.authorToth, G.en_US
dc.date.accessioned2013-04-08T20:49:46Z
dc.date.available2014-03-03T15:09:25Zen_US
dc.date.issued2013-01en_US
dc.identifier.citationMa, Y. J.; Nagy, A. F.; Russell, C. T.; Strangeway, R. J.; Wei, H. Y.; Toth, G. (2013). "A global multispecies single‐fluid MHD study of the plasma interaction around Venus." Journal of Geophysical Research: Space Physics 118(1): 321-330. <http://hdl.handle.net/2027.42/97207>en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97207
dc.publisherCambridge University Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherVenus Ionosphereen_US
dc.subject.otherSolar Wind Interactionen_US
dc.titleA global multispecies single‐fluid MHD study of the plasma interaction around Venusen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97207/1/jgra50043.pdf
dc.identifier.doi10.1029/2012JA018265en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceStrangeway, R. J., and C. T. Russell ( 1996 ), Plasma waves and field‐aligned currents in the Venus plasma mantle, J. Geophys. Res., 101 ( A8 ), 17,313 – 17,324, doi: 10.1029/96JA00927.en_US
dc.identifier.citedreferenceMurawski, K., and R. S. Steinolfson ( 1996 ), Numerical simulations of mass loading in the solar wind interaction with Venus, J. Geophys. Res., 101, 2547.en_US
dc.identifier.citedreferencePhillips, J. L., and C. T. Russell ( 1987 ), Revised upper limit on the internal magnetic moment of Venus, Adv. in Space Res., 7 ( 12 ), 291 – 294.en_US
dc.identifier.citedreferencePowell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. DeZeeuw ( 1999 ), A solution‐ adaptive upwind scheme for ideal magnetohydrodynamics, J. Comp. Phys., 154, 284.en_US
dc.identifier.citedreferenceRussell, C. T., J. G. Luhmann, and R. J. Strangeway ( 2006 ), The solar wind interaction with Venus through the eyes of the Pioneer Venus Orbiter, Planet. Space Sci., 54, 1482 – 1495.en_US
dc.identifier.citedreferenceSchunk, R. W., and A. F. Nagy ( 1980 ), Ionospheres of the terrestrial planets, Rev. Geophys., 18 ( 4 ), 813 – 852, doi: 10.1029/RG018i004p00813.en_US
dc.identifier.citedreferenceSchunk, R. W., and A. F. Nagy ( 2009 ), Ionospheres, 2nd edn, Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 1980 ), The solar wind interaction with Venus—Pioneer Venus observations of bow shock location and structure, J. Geophys. Res., 85, 7625 – 7641.en_US
dc.identifier.citedreferenceSpreiter, J. R., and S. S. Stahara ( 1980 ), Solar wind flow past Venus: Theory and comparisons, J. Geophys. Res., 85, 7715.en_US
dc.identifier.citedreferenceSpreiter, J. R., and S. S. Stahara ( 1992 ), Computer modeling of solar wind interaction with Venus and Mars, in Venus and Mars: Athmospheres, Ionospheres and Solar Wind Interactions, Geophys. Monogr. Set, edited by J. G. Luhmann, M. Tatrallyay, and R. O. Pepin, vol. 66, p. 345, AGU, Washington D.C.en_US
dc.identifier.citedreferenceStahara, S. S., G. A. Molvik, and J. R. Spreiter ( 1987 ), A new computational model for the prediction of mass loading phenomena for the solar wind interactions with cometary and planetary ionospheres, AIAA 87‐1410, Am. Inst. of Aeronaut. and Astronaut., New York.en_US
dc.identifier.citedreferenceTanaka, T., and K. Murawski ( 1997 ), Three‐dimensional MHD simulation of the solar wind interaction with the ionosphere of Venus: Results of two‐component reacting plasma simulation, J. Geophys. Res., 102, 19,805.en_US
dc.identifier.citedreferenceTanaka, T. ( 2000 ), Effects of Decreasing Ionospheric Pressure and the Plasma Mixing Recess on the Solar Wind Interaction with Non‐magnetized Planets, Advances in Space Res., 26 ( 10 ), 1577 – 1586.en_US
dc.identifier.citedreferenceTerada, N., S. Machida, and H. Shinagawa ( 2002 ), Global hybrid simulation of the Kelvin–Helmholtz instability at the Venus ionopause. J. Geophys. Res., 107 ( A12 ), 1471.en_US
dc.identifier.citedreferenceTerada, N., H. Shinagawa, and S. Machida ( 2004 ), Global hybrid model of the solar wind interaction with the Venus ionosphere: ion escape processes, Adv. Space Res., 33 ( 2 ), 161 – 166.en_US
dc.identifier.citedreferenceTerada, N., H. Shinagawa, T. Tanaka, K. Murawski, and K. Terada ( 2009 ), A three‐dimensional, multispecies, comprehensive MHD model of the solar wind interaction with the planet Venus, J. Geophys. Res., 114, A09208, doi: 10.1029/2008JA013937.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive Numerical Algorithms in Space Weather Modeling, J. Comput. Phys., 231, 870 – 903.en_US
dc.identifier.citedreferenceZhang, T.‐L., J. G. Luhmann, and C. T. Russell ( 1990 ), The solar cycle dependence of the location and shape of the Venus bow shock, J. Geophys. Res., 95, 14,961 – 14,967.en_US
dc.identifier.citedreferenceZhang, T.‐L., J. G. Luhmann, and C. T. Russell ( 1991 ), The magnetic barrier at Venus, J. Geophys. Res., 96, 11,145 – 11,153.en_US
dc.identifier.citedreferenceZhang, T.‐L., et al. ( 2008 ), Initial Venus Express magnetic field observations of the Venus bow shock location at solar minimum, Planet. Space Sci., 56 ( 6 ), 785 – 789.en_US
dc.identifier.citedreferenceZhang, T. L., J. Du, Y. J. Ma, H. Lammer, W. Baumjohann, C. Wang, and C. T. Russell ( 2009 ), Disappearing induced magnetosphere at Venus: Implications for close‐in exoplanets, Geophys. Res. Lett., 36, L20203, doi: 10.1029/2009GL040515.en_US
dc.identifier.citedreferenceBauske, R., et al. ( 1998 ), A three‐dimensional MHD study of solar wind mass loading processes at Venus: Effects of photoionization, electron impact ionization and charge exchange, J. Geophys. Res., 103, 23,265.en_US
dc.identifier.citedreferenceBelotserkovskii, O. M., T. K. Breus, A.M. Krymskii, V. Y. Mitnitskii, A. F. Nagy, and T. I. Gombosi ( 1987 ), The effect of the hot oxygen corona on the interaction of the solar wind with Venus, Geophys. Res. Lett., 14, 503.en_US
dc.identifier.citedreferenceBreus, T. K., A. M. Krymskii, and V. Y. Mitnitskii ( 1987 ), Effect of an extended neutral atmosphere on the interaction of the solar wind and the nonmagnetic bodies of the solar wind, I, Venus, Kosm. Issled., 25, 124.en_US
dc.identifier.citedreferenceCable, S., and R. S. Steinolfson ( 1995 ), Three‐dimensional MHD simulations of the interaction between Venus and the solar wind, J. Geophys. Res., 100, 21,645.en_US
dc.identifier.citedreferenceFox, J. L., and K. Y. Sung ( 2001 ), Solar activity variations of the Venus thermosphere/ionosphere, J. Geophys. Res., 106 ( A10 ), 21,305.en_US
dc.identifier.citedreferenceJia, Y.‐D., Y. J. Ma, C. T. Russell, H. R. Lai, G. Toth, and T. I. Gombosi ( 2012 ), Perpendicular flow deviation in a magnetized counter‐streaming plasma, Icarus, 218 ( 2 ), 895 ‐ 905, doi: 10.1016/j.icarus.2012.01.017.en_US
dc.identifier.citedreferenceKallio, E., J. G. Luhmann, and J. G. Lyon ( 1998 ), Magnetic field near Venus: a comparison between PVO magnetic field observations and an MHD simulation, J. Geophys. Res., 103, 4723 – 4737.en_US
dc.identifier.citedreferenceKallio, E., R. Jarvinen, and P. Janhunen ( 2006 ), Venus–solar wind interaction: asymmetries and the escape of O + ions, Planet. Space Sci., 54 ( 13–14 ), 1472 – 148.en_US
dc.identifier.citedreferenceKallio, E., et al. ( 2008 ), The Venusian induced magnetosphere: A case study of plasma and magnetic field measurements on the Venus Express mission, Planet. Space Sci., 56 ( 6 ), 796 – 801.en_US
dc.identifier.citedreferenceLuhmann, J. G., T.‐L. Zhang, S. M. Petrinec, C. T. Russell, P. Gazis, and A. Barnes ( 1993 ), Solar cycle 21 effects on the Interplanetary Magnetic Field and related parameters at 0.7 and 1.0 AU, J. Geophys. Res., 98 ( A4 ), 5559 – 5572.en_US
dc.identifier.citedreferenceMa, Y., A. F. Nagy, I. V. Sokolov, and K. C. Hansen ( 2004a ), Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109, doi: 10.1029/2002JA009293.en_US
dc.identifier.citedreferenceMa, Y., A. F. Nagy, T. E. Cravens, I. V. Sokolov, J. Clark, and K. C. Hansen ( 2004b ), 3‐D global MHD model prediction for the first close flyby of Titan by Cassini, Geophys. Res. Lett., 31, L22803, doi: 10.1029/2004GL021215.en_US
dc.identifier.citedreferenceMa, Y., A. F. Nagy, T. Cravens, I. V. Sokolov, K. C. Hansen, J. Wahlund, F. Crary, A. Coates, and M. Dougherty ( 2006 ), Comparisons between MHD model calculations and observations of Cassini flybys of Titan, J. Geophys. Res., 111 ( A5 ), A05207.en_US
dc.identifier.citedreferenceMa, Y., and A. F. Nagy ( 2007 ), Ion escape fluxes from Mars, Geophys. Res. Lett., 34, L08201, doi: 10.1029/2006GL029208.en_US
dc.identifier.citedreferenceMa, Y., et al. ( 2007 ), 3D global multi‐species Hall‐MHD simulation of the Cassini T9 flyby, Geophys. Res. Lett., 34, L24S10, doi: 10.1029/2007GL031627.en_US
dc.identifier.citedreferenceMartinecz, C., et al. ( 2008 ), Location of the bow shock and ion composition boundaries at Venus—initial determinations from Venus Express ASPERA‐4, Planet. Space Sci., 56 ( 6 ), 780 – 784.en_US
dc.identifier.citedreferenceMcGary, J. E., and D. H. Pontius Jr. ( 1994 ), MHD simulations of the boundary layer formation along the dayside Venus ionopause due to mass loading, J. Geophys. Res., 99 2289en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.