Show simple item record

Lack of Interaction Between the Peptidomimetic Substrates Captopril and Cephradine

dc.contributor.authorFoster, David R.en_US
dc.contributor.authorYee, Shiyinen_US
dc.contributor.authorBleske, Barry E.en_US
dc.contributor.authorCarver, Peggy L.en_US
dc.contributor.authorShea, Michael J.en_US
dc.contributor.authorMenon, Sujatha S.en_US
dc.contributor.authorRamachandran, Chandrasekharanen_US
dc.contributor.authorWelage, Lynda S.en_US
dc.contributor.authorAmidon, Gordon L.en_US
dc.date.accessioned2013-04-08T20:50:00Z
dc.date.available2013-04-08T20:50:00Z
dc.date.issued2009-03en_US
dc.identifier.citationFoster, David R.; Yee, Shiyin; Bleske, Barry E.; Carver, Peggy L.; Shea, Michael J.; Menon, Sujatha S.; Ramachandran, Chandrasekharan; Welage, Lynda S.; Amidon, Gordon L. (2009). "Lack of Interaction Between the Peptidomimetic Substrates Captopril and Cephradine." The Journal of Clinical Pharmacology 49(3). <http://hdl.handle.net/2027.42/97250>en_US
dc.identifier.issn0091-2700en_US
dc.identifier.issn1552-4604en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97250
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCephalosporinen_US
dc.subject.otherHPEPT1en_US
dc.subject.otherDrug Interactionen_US
dc.subject.otherPeptide Transporten_US
dc.subject.otherACE‐Inhibitoren_US
dc.titleLack of Interaction Between the Peptidomimetic Substrates Captopril and Cephradineen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbsecondlevelPediatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Internal Medicine, Medical School, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumCollege of Pharmacy, University of Michigan and Department of Pharmacy Services, University Hospital, Ann Arbor, MIen_US
dc.contributor.affiliationumCollege of Pharmacy, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationotherShiyin Yee Inc., Cupertino, CAen_US
dc.contributor.affiliationotherDepartment of Pharmacy Practice, Purdue University, School of Pharmacy and Pharmaceutical Sciences, Indianapolis, INen_US
dc.contributor.affiliationotherPfizer, Inc., New London, CTen_US
dc.identifier.pmid19246733en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97250/1/0091270008329554.pdf
dc.identifier.doi10.1177/0091270008329554en_US
dc.identifier.sourceThe Journal of Clinical Pharmacologyen_US
dc.identifier.citedreferenceDuchin KL, McKinstry DN, Cohen AI, Migdalof BH. Pharmacokinetics of captopril in healthy subjects and in patients with cardiovascular diseases. Clin Pharmacokinet. 1988; 14: 241 – 259.en_US
dc.identifier.citedreferenceLin JH, Chen IW, Ulm EH, Duggan DE. Differential renal handling of angiotensin‐converting enzyme inhibitors enalaprilat and lisinopril in rats. Drug Metab Dispos. 1988; 16: 392 – 396.en_US
dc.identifier.citedreferenceYuasa H, Fleisher D, Amidon GL. Noncompetitive inhibition of cephradine uptake by enalapril in rabbit intestinal brush‐border membrane vesicles: an enalapril specific inhibitory binding site on the peptide carrier. J Pharmacol Exp Ther. 1994; 269: 1107 – 1111.en_US
dc.identifier.citedreferenceYuasa H, Amidon GL, Fleisher D. Peptide carrier‐mediated transport in intestinal brush border membrane vesicles of rats and rabbits: cephradine uptake and inhibition. Pharm Res. 1993; 10: 400 – 404.en_US
dc.identifier.citedreferenceThwaites DT, Hirst BH, Simmons NL. Substrate specificity of the di/tripeptide transporter in human intestinal epithelia (Caco‐2): identification of substrates that undergo H(+)‐coupled absorption. Br J Pharmacol. 1994; 113: 1050 – 1056.en_US
dc.identifier.citedreferenceKitagawa S, Takeda J, Sato S. pH‐dependent inhibitory effects of angiotensin‐converting enzyme inhibitors on cefroxadine uptake by rabbit small intestinal brush‐border membrane vesicles and their relationship with hydrophobicity and the ratio of zwitterionic species. Biol Pharm Bull. 1999; 22: 721 – 724.en_US
dc.identifier.citedreferenceKitagawa S, Takeda J, Kaseda Y, Sato S. Inhibitory effects of angiotensin‐converting enzyme inhibitor on cefroxadine uptake by rabbit small intestinal brush border membrane vesicles. Biol Pharm Bull. 1997; 20: 449 – 451.en_US
dc.identifier.citedreferenceFriedman DI, Amidon GL. Intestinal absorption mechanism of dipeptide angiotensin converting enzyme inhibitors of the lysyl‐proline type: lisinopril and SQ 29,852. J Pharm Sci. 1989; 78: 995 – 998.en_US
dc.identifier.citedreferenceFriedman DI, Amidon GL. Passive and carrier‐mediated intestinal absorption components of two angiotensin converting enzyme (ACE) inhibitor prodrugs in rats: enalapril and fosinopril. Pharm Res. 1989; 6: 1043 – 1047.en_US
dc.identifier.citedreferenceMatsumoto S, Saito H, Inui K. Transcellular transport of oral cephalosporins in human intestinal epithelial cells, Caco‐2: interaction with dipeptide transport systems in apical and basolateral membranes. J Pharmacol Exp Ther. 1994; 270: 498 – 504.en_US
dc.identifier.citedreferenceHu M, Zheng L, Chen J, et al. Mechanisms of transport of quinapril in Caco‐2 cell monolayers: comparison with cephalexin. Pharm Res. 1995; 12: 1120 – 1125.en_US
dc.identifier.citedreferenceZhu T, Chen XZ, Steel A, Hediger MA, Smith D. Differential recognition of ACE inhibitors in xenopus laevis oocytes expressing rat PEPT1 and PEPT2. Pharm Res. 2000; 17: 526 – 532.en_US
dc.identifier.citedreferenceLukner P, Brandsch M. Interaction of 31 β‐lactum antibiotics with the H+/peptide symporter PEPT2: analysis of affinity constants and comparison with PEPT1. Eur J Pharm Biopharm. 2005; 59: 17 – 24.en_US
dc.identifier.citedreferenceMoore VA, Irwin WJ, Timmins P, et al. A rapid screening system to determine drug affinities for the intestinal dipeptide transporter 2: affinities of ACE inhibitors. Int J Pharm. 2000; 210: 29 – 44.en_US
dc.identifier.citedreferenceBathala MS, Weinstein SH, Meeker FS Jr, Singhvi SM, Migdalof BH. Quantitative determination of captopril in blood and captopril and its disulfide metabolites in plasma by gas chromatography. J Pharm Sci. 1984; 73: 340 – 344.en_US
dc.identifier.citedreferenceDrummer OH, Jarrot B, Louis WJ. Combined gas chromatographic‐mass spectrometric procedure for the measurement of captopril and sulfur‐conjugated metabolites of captopril in plasma and urine. J Chromatogr. 1984; 305: 83 – 93.en_US
dc.identifier.citedreferenceLindgren K. Determination of cefadroxil in serum by highperformance liquid chromatography with cephradine as internal standard. J Chromatogr. 1987; 413: 347 – 350.en_US
dc.identifier.citedreferenceGibaldi M, Perrier D. Pharmacokinetics New York: Dekker; 1982: 409 – 417.en_US
dc.identifier.citedreferenceNightingale CH, Greene DS, Quintiliani R. Pharmacokinetics and clinical use of cephalosporin antibiotics. J Pharm Sci. 1975; 64: 1899 – 1926.en_US
dc.identifier.citedreferenceInui K, Yamamoto M, Saito H. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco‐2: specific transport systems in apical and basolateral membranes. J Pharmacol Exp Ther. 1992; 261: 195 – 201.en_US
dc.identifier.citedreferenceJacolot A, Tod M, Petitjean O. Pharmacokinetic interaction between cefdinir and two angiotensin‐converting enzyme inhibitors in rats. Antimicrob Agents Chemother. 1996; 40: 979 – 982.en_US
dc.identifier.citedreferencePadoin C, Tod M, Perret G, Petitjean O. Analysis of the pharmacokinetic interaction between cephalexin and quinapril by a nonlinear mixed‐effect model. Antimicrob Agents Chemother. 1998; 42: 1463 – 1469.en_US
dc.identifier.citedreferenceBins JW, Mattie H. Saturation of the tubular excretion of beta‐lactam antibiotics. Br J Clin Pharmacol. 1988; 25: 41 – 50.en_US
dc.identifier.citedreferencevan Ginneken CA, Russel FG. Saturable pharmacokinetics in the renal excretion of drugs. Clin Pharmacokinet. 1989; 16: 38 – 54.en_US
dc.identifier.citedreferenceLandowski CP, Sun D, Foster DR, et al. Gene expression in the human intestine and correlation with oral valacyclovir pharmacokinetic parameters. J Pharmacol Exp Ther. 2003; 306: 778 – 786.en_US
dc.identifier.citedreferencePhan DD, Chin‐Hong P, Lin ET, Anderle P, Sadee W, Guglielmo BJ. Intra‐ and interindividual variabilities of valacyclovir oral bioavailability and effect of coadministration of an hPEPT1 inhibitor. Antimicrob Agents Chemother. 2003; 47: 2351 – 2353.en_US
dc.identifier.citedreferenceBai JPF, Stewart BH, Amidon GL.: Gastrointestinal transport of peptide and protein drugs and prodrugs. In, Welling PG, Balant LP eds. Handbook of Experimental Pharmacology. Heidelberg: Springer‐Verlag; 1994: 189 – 206.en_US
dc.identifier.citedreferenceNaruhashi K, Sai Y, Tamai I, Suzuki N, Tsuji A. PepT1 mRNA expression is induced by starvation and its level correlates with absorptive transport of cefadroxil longitudinally in the rat intestine. Pharm Res. 2002; 19: 1417 – 1423.en_US
dc.identifier.citedreferenceThamotharan M, Bawani SZ, Zhou X, Adibi SA. Functional and molecular expression of intestinal oligopeptide transporter (Pept‐1) after a brief fast. Metabolism. 1999; 48: 681 – 684.en_US
dc.identifier.citedreferenceErickson RH, Gum JR, Lindstrom MM, McKean D, Kim YS. Regional expression and dietary regulation of rat small intestinal peptide and amino acid transporter mRNAs. Biochem Biophys Res Commun. 1995; 216: 249 – 257.en_US
dc.identifier.citedreferenceShiraga T, Miyamoto K, Tanaka H, et al. Cellular and molecular mechanisms of dietary regulation on rat intestinal H+/Peptide transporter PepT1. Gastroenterology. 1999; 116: 354 – 362.en_US
dc.identifier.citedreferenceAdibi SA. Regulation of expression of the intestinal oligopeptide transporter (Pept‐1) in health and disease. Am J Physiol Gastrointest Liver Physiol. 2003; 285: G779 – G788.en_US
dc.identifier.citedreferenceThwaites DT, Cavet M, Hirst BH, Simmons NL. Angiotensin‐converting enzyme (ACE) inhibitor transport in human intestinal epithelial (Caco‐ 2) cells. Br J Pharmacol. 1995; 114: 981 – 986.en_US
dc.identifier.citedreferenceHu M, Amidon GL. Passive and carrier‐mediated intestinal absorption components of captopril. J Pharm Sci. 1988; 77: 1007 – 1011.en_US
dc.identifier.citedreferenceOh D‐M, Han H‐K, Amidon GL.: Drug transport and targeting. In, Amidon GL, Sadee W ed. Membrane Transporters as Drug Targets. New York, NY: Klewer Academis/Plenum; 1999: 59 – 88.en_US
dc.identifier.citedreferenceEberl S, Renner B, Neubert A, et al. Role of p‐glycoprotein inhibition for drug interactions:Evidence from in vitro and pharmacoepidemiological studies. Clin Pharmacokinet. 2007; 46: 1039 – 1049.en_US
dc.identifier.citedreferenceCallaghan R, Crowley E, Potter S, Kerr ID. P‐glycoprotein: so many ways to turn it on. J Clin Pharmacol. 2008; 48: 365 – 378.en_US
dc.identifier.citedreferenceTsuji A, Tamai I. Carrier‐mediated intestinal transport of drugs. Pharm Res. 1996; 13: 963 – 977.en_US
dc.identifier.citedreferenceSai Y. Biochemical and molecular pharmacological aspects of transporters as determinants of drug disposition. Drug Metab Pharmacokinet. 2005; 20: 91 – 99.en_US
dc.identifier.citedreferenceHerrera‐Ruiz D, Knipp GT. Current perspectives on established and putative mammalian oligopeptide transporters. J Pharm Sci. 2003; 92: 691 – 714.en_US
dc.identifier.citedreferenceBrodin B, Ielsen CU, Teffansen B, Fokjaer S. Transport of peptidomimetic drugs by the intestinal Di/tri‐peptide transporter, PepT1. Pharmacol Toxicol. 2002; 90: 285 – 296.en_US
dc.identifier.citedreferenceTerada T, Inui KI. Peptide transporters: structure, function, regulation and application for drug delivery. Curr Drug Metab. 2004; 5: 85 – 94.en_US
dc.identifier.citedreferenceAnand BS, Patel J, Mitra AK. Interactions of the dipeptide ester prodrugs of acyclovir with the intestinal oligopeptide transporter: competitive inhibition of glycylsarcosine transport in human intestinal cell line‐caco‐2. J Pharmacol. 2003; 2: 781 – 791.en_US
dc.identifier.citedreferenceIrie M, Terada T, Sawada K, Saito H, Inui KI. Recognition and transport characteristics of nonpeptidic compounds by basolateral peptide transporter in caco‐2 cells. J Pharmacol. 2001; 298: 711 – 717.en_US
dc.identifier.citedreferenceLepsy CS, Guttendorf RJ, Kugler AR, Smith DE. Effects of organic anion, organic cation, and dipeptide transport inhibitors on cefdinir in the isolated perfused rat kidney. Antimicrob Agents Chemother. 2003; 47: 689 – 696.en_US
dc.identifier.citedreferenceBerger UV, Hediger MA. Distribution of peptide transporter PEPT2 mRNA in the rat nervous system. Anat Embryol (Berl). 1999; 199: 439 – 449.en_US
dc.identifier.citedreferenceBahadduri PM, D'Souza VM, Pinsonneault JK, et al. Functional characterization of the peptide transporter PEPT2 in primary cultures of human upper airway epithelium. Am J Respir Cell Mol Biol. 2005; 32: 319 – 325.en_US
dc.identifier.citedreferenceShu C, Shen H, Hopfer, U, Smith DE. Mechanism of intestinal absorption and renal reabsorption of an orally active ace inhibitor: uptake and transport of fosinopril in cell cultures. Drug Metab Dispos. 2001; 29: 1307 – 1315.en_US
dc.identifier.citedreferenceLin CJ, Smith DE. Glycylsarcosine uptake in rabbit renal brush border membrane vesicles isolated from outer cortex or outer medulla: evidence for heterogeneous distribution of oligopeptide transporters. AAPS Pharm Sci. 1999; 1: E1.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.