Show simple item record

Phylogeography of a species complex of lowland Neotropical rain forest trees ( Carapa , Meliaceae)

dc.contributor.authorScotti‐saintagne, Carolineen_US
dc.contributor.authorDick, Christopher W.en_US
dc.contributor.authorCaron, Henrien_US
dc.contributor.authorVendramin, Giovanni G.en_US
dc.contributor.authorGuichoux, Erwanen_US
dc.contributor.authorBuonamici, Annaen_US
dc.contributor.authorDuret, Carolineen_US
dc.contributor.authorSire, Pierreen_US
dc.contributor.authorValencia, Renatoen_US
dc.contributor.authorLemes, Maristerra R.en_US
dc.contributor.authorGribel, Rogérioen_US
dc.contributor.authorScotti, Ivanen_US
dc.date.accessioned2013-04-08T20:50:05Z
dc.date.available2014-05-23T15:04:19Zen_US
dc.date.issued2013-04en_US
dc.identifier.citationScotti‐saintagne, Caroline ; Dick, Christopher W.; Caron, Henri; Vendramin, Giovanni G.; Guichoux, Erwan; Buonamici, Anna; Duret, Caroline; Sire, Pierre; Valencia, Renato; Lemes, Maristerra R.; Gribel, Rogério ; Scotti, Ivan (2013). "Phylogeography of a species complex of lowland Neotropical rain forest trees ( Carapa , Meliaceae)." Journal of Biogeography 40(4). <http://hdl.handle.net/2027.42/97266>en_US
dc.identifier.issn0305-0270en_US
dc.identifier.issn1365-2699en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97266
dc.description.abstractAim  Many tropical tree species have poorly delimited taxonomic boundaries and contain undescribed or cryptic species. We examined the genetic structure of a species complex in the tree genus Carapa in the Neotropics in order to evaluate age, geographic patterns of diversity and evolutionary relationships, and to quantify levels of introgression among currently recognized species. Location  Lowland moist forests in the Guiana Shield, the Central and Western Amazon Basin, Chocó and Central America. Methods  Genetic structure was analysed using seven nuclear simple sequence repeats (nuSSR), five chloroplast SSRs (cpSSR), and two chloroplast DNA (cpDNA) intergenic sequences ( trn H –psb A and trn C –ycf 6). Bayesian clustering analysis of the SSR data was used to infer population genetic structure and to assign 324 samples to their most likely genetic cluster. Bayesian coalescence analyses were performed on the two cpDNA markers to estimate evolutionary relationships and divergence times. Results  Two genetic clusters ( nu_guianensis and nu_surinamensis ) were detected, which correspond to the Neotropical species C. guianensis ( sensu latu ) and C. surinamensis . Fourteen cpDNA haplotypes clustered into six haplogroups distributed between the two nuclear genetic clusters. Divergence between the haplogroups was initiated in the Miocene, with some haplotype structure evolving as recently as the Pleistocene. The absence of complete lineage sorting between the nuclear and chloroplast genomes and the presence of hybrid individuals suggest that interspecific reproductive barriers are incomplete. NuSSR diversity was highest in C. guianensis and, within C. guianensis , cpDNA diversity was highest in the Central and Western Amazon Basin. Regional genetic differentiation was strong but did not conform to an isolation‐by‐distance process or exhibit a phylogeographical signal. Main conclusions  The biogeographical history of Neotropical Carapa appears to have been influenced by events that took place during the Neogene. Our results point to an Amazonian centre of origin and diversification of Neotropical Carapa , with subsequent migration to the Pacific coast of South America and Central America. Gene flow apparently occurs among species, and introgression events are supported by inconsistencies between chloroplast and nuclear lineage sorting. The absence of phylogeographical structure may be a result of the ineffectiveness of geographical barriers among populations and of reproductive isolation mechanisms among incipient and cryptic species in this species complex.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherNeogene Diversificationen_US
dc.subject.otherAmazoniaen_US
dc.subject.otherCarapaen_US
dc.subject.otherHistorical Biogeographyen_US
dc.subject.otherMahogany Familyen_US
dc.subject.otherMolecular Markersen_US
dc.subject.otherPhylogeographyen_US
dc.subject.otherQuaternary Diversificationen_US
dc.subject.otherSpecies Complexesen_US
dc.titlePhylogeography of a species complex of lowland Neotropical rain forest trees ( Carapa , Meliaceae)en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeography and Mapsen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherIstituto di Genetica Vegetale, Sezione di Firenze, Consiglio Nazionale delle Ricerche, 50019 Sesto Fiorentino, Firenze, Italyen_US
dc.contributor.affiliationotherSmithsonian Tropical Research Institute, Gamboa, Republic of Panamaen_US
dc.contributor.affiliationotherINRA UMR 0745 EcoFoG (‘Ecologie des forêts de Guyane’), Campus Agronomique, BP709 – 97387 Kourou, French Guiana, Franceen_US
dc.contributor.affiliationotherLaboratório de Genética e Biologia Reprodutiva de Plantas, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, 69083‐000 Manaus, AM, Brazilen_US
dc.contributor.affiliationotherLaboratorio de Ecología de Plantas y Herbario QCA, Escuela de Ciencias Biológicas, P. Universidad Católica del Ecuador, Apartado 17‐01‐2184, Quito, Ecuadoren_US
dc.contributor.affiliationotherINRA, Université de Bordeaux, UMR1202 BIOGECO, F‐33610 Cestas, Franceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97266/1/jbi2678.pdf
dc.identifier.doi10.1111/j.1365-2699.2011.02678.xen_US
dc.identifier.sourceJournal of Biogeographyen_US
dc.identifier.citedreferenceNovick, R.S., Dick, C.W., Lemes, M., Navarro, C., Caccone, A. & Bermingham, E. ( 2003 ) Genetic structure of Mesoamerican populations of big‐leaf mahogany ( Swietenia macrophylla ) inferred by microsatellite analysis. Molecular Ecology, 12, 2885 – 2893.en_US
dc.identifier.citedreferenceHardesty, B., Dick, C.W., Hamrick, J., Degen, B., Hubbell, S. & Bermingham, E. ( 2010 ) Geographic influence on genetic structure in the widespread Neotropical tree Simarouba amara Aubl. (Simaroubaceae). Tropical Plant Biology, 3, 28 – 39.en_US
dc.identifier.citedreferenceHardy, O.J. & Vekemans, X. ( 2002 ) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2, 618 – 620.en_US
dc.identifier.citedreferenceHardy, O.J., Maggia, L., Bandou, E., Breyne, P., Caron, H., Chevallier, M.‐H., Doligez, A., Dutech, C., Kremer, A., Latouche‐Hallé, C., Troispoux, V., Veron, V. & Degen, B. ( 2006 ) Fine‐scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Molecular Ecology, 15, 559 – 571.en_US
dc.identifier.citedreferenceHewitt, G. ( 2000 ) The genetic legacy of the Quaternary ice ages. Nature, 405, 907 – 913.en_US
dc.identifier.citedreferenceHolland, B.R., Benthin, S., Lockhart, P.J., Moulton, V. & Huber, K.T. ( 2008 ) Using supernetworks to distinguish hybridization from incomplete lineage sorting. BMC Evolutionary Biology, 8, 202.en_US
dc.identifier.citedreferenceHoorn, C. & Wesselingh, F.P. ( 2010 ) Amazonia, landscape and species evolution. Blackwell Publishing, Oxford.en_US
dc.identifier.citedreferenceHubisz, M.J., Falush, D., Stephens, M. & Pritchard, J.K. ( 2009 ) Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 9, 1322 – 1332.en_US
dc.identifier.citedreferenceJakobsson, M. & Rosenberg, N.A. ( 2007 ) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23, 1801 – 1806.en_US
dc.identifier.citedreferenceKenfack, D. ( 2011 ) Resurrection in Carapa (Meliaceae): a reassessment of morphological variation and species boundaries using multivariate methods in a phylogenetic context. Botanical Journal of the Linnaean Society, 165, 186 – 221.en_US
dc.identifier.citedreferenceKenfack, D. & Perez, A. ( 2011 ) Two new species of Carapa (Meliaceae) from western Ecuador. Systematic Botany, 36, 124 – 128.en_US
dc.identifier.citedreferenceKingman, J.F.C. ( 1982 ) The coalescent. Stochastic Processes and their Applications, 13, 235 – 248.en_US
dc.identifier.citedreferenceLemes, M.R., Gribel, R., Proctor, J. & Grattapaglia, D. ( 2003 ) Population genetic structure of mahogany ( Swietenia macrophylla King, Meliaceae) across the Brazilian Amazon, based on variation at microsatellite loci: implications for conservation. Molecular Ecology, 12, 2875 – 2883.en_US
dc.identifier.citedreferenceLepais, O., Petit, R.J., Guichoux, E., Lavabre, J.E., Alberto, F., Kremer, A. & Gerber, S. ( 2009 ) Species relative abundance and direction of introgression in oaks. Molecular Ecology, 18, 2228 – 2242.en_US
dc.identifier.citedreferenceLinder, C.R. & Rieseberg, L.H. ( 2004 ) Reconstructing patterns of reticulate evolution in plants. American Journal of Botany, 91, 1700 – 1708.en_US
dc.identifier.citedreferenceMantel, N. ( 1967 ) The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209 – 220.en_US
dc.identifier.citedreferenceMuellner, A.N., Savolainen, V., Samuel, R. & Chase, M.W. ( 2006 ) The mahogany family “out‐of‐Africa”: divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant, and fossil distribution of diversity. Molecular Phylogenetics and Evolution, 40, 236 – 250.en_US
dc.identifier.citedreferenceNoamesi, G.K. ( 1958 ) A revision of Xylocarpae (Meliaceae). PhD Thesis, University of Wisconsin, Madison, WI.en_US
dc.identifier.citedreferencevan Oosterhout, C., Hutchinson, W.F., Wills, D.P.M. & Shipley, P. ( 2004 ) MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4, 535 – 538.en_US
dc.identifier.citedreferencePetit, R.J. & Excoffier, L. ( 2009 ) Gene flow and species delimitation. Trends in Ecology and Evolution, 24, 386 – 393.en_US
dc.identifier.citedreferencePetit, R.J., El Mousadik, A. & Pons, O. ( 1998 ) Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12, 844 – 855.en_US
dc.identifier.citedreferencePetit, R.J., Bodenès, C., Ducousso, A., Roussel, G. & Kremer, A. ( 2003 ) Hybridization as a mechanism of invasion in oaks. New Phytologist, 161, 151 – 164.en_US
dc.identifier.citedreferencePetit, R.J., Duminil, J., Fineschi, S., Hampe, A., Salvini, D. & Vendramin, G.G. ( 2005 ) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molecular Ecology, 14, 689 – 701.en_US
dc.identifier.citedreferencePetit, R.J., Hu, F.S. & Dick, C.W. ( 2008 ) Forests of the past: a window to future changes. Science, 320, 1450 – 1452.en_US
dc.identifier.citedreferencePoelchau, M.F. & Hamrick, J.L. ( 2013 ) Comparative phylogeography of three common Central American Neotropical tree species. Journal of Biogeography 40, 618 – 631.en_US
dc.identifier.citedreferencePons, O. & Petit, R.J. ( 1996 ) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics, 144, 1237 – 1245.en_US
dc.identifier.citedreferencePosada, D. & Buckley, T.R. ( 2004 ) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology, 53, 793 – 808.en_US
dc.identifier.citedreferencePritchard, J., Stephens, M. & Donnelly, P. ( 2000 ) Inference of population structure using multilocus genotype data. Genetics, 155, 945 – 959.en_US
dc.identifier.citedreferenceRosell, J.A., Olson, M.E., Weeks, A., De‐Nova, J.A., Lemos, R.M., Camacho, J.P., Feria, T.P., Gómez‐Bermejo, R., Montero, J.C. & Eguiarte, L.E. ( 2010 ) Diversification in species complexes: tests of species origin and delimitation in the Bursera simaruba clade of tropical trees (Burseraceae). Molecular Phylogenetics and Evolution, 57, 798 – 811.en_US
dc.identifier.citedreferenceRosenberg, N.A. ( 2004 ) Distruct: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137 – 138.en_US
dc.identifier.citedreferenceRull, V. ( 2011 ) Origins of biodiversity. Science, 331, 398 – 399.en_US
dc.identifier.citedreferenceScarano, F.R., Pereira, T.S. & Rocas, G. ( 2003 ) Seed germination during floatation and seedling growth of Carapa guianensis, a tree from flood‐prone forests of the Amazon. Plant Ecology, 168, 291 – 296.en_US
dc.identifier.citedreferenceShaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W., Miller, J., Siripun, K.C., Winder, C.T., Schilling, E.E. & Small, R.L. ( 2005 ) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany, 92, 142 – 166.en_US
dc.identifier.citedreferenceSlatkin, M. ( 1995 ) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457 – 462.en_US
dc.identifier.citedreferenceStebbins, G.L. ( 1974 ) Flowering plants: evolution above the species level. Belknap Press, Cambridge, MA.en_US
dc.identifier.citedreferenceStyles, B.T. ( 1981 ) Swietenioideae. Flora Neotropica Monograph No. 28: Meliaceae (ed. by T. Pennington, T. Styles and A.H. Taylor ), pp. 359 – 418. New York Botanical Garden, New York.en_US
dc.identifier.citedreferenceStyles, B.T. & White, F. ( 1991 ) Meliaceae. Flora of tropical East Africa (ed. by R.M. Polhill ), pp. 1 – 68. A.A. Balkema, Rotterdam.en_US
dc.identifier.citedreferenceSwofford, D.L. ( 2003 ) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MA.en_US
dc.identifier.citedreferenceTempleton, A.R., Crandall, K.A. & Sing, C.F. ( 1992 ) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics, 132, 619 – 633.en_US
dc.identifier.citedreferenceTiffin, P., Olson, S. & Moyle, L.C. ( 2001 ) Asymmetrical crossing barriers in angiosperms. Proceedings of the Royal Society B: Biological Sciences, 268, 861 – 867.en_US
dc.identifier.citedreferenceVinson, C.C., Azevedo, V.C.R., Sampaio, I. & Ciampi, A.Y. ( 2005 ) Development of microsatellite markers for Carapa guianensis (Aublet), a tree species from the Amazon forest. Molecular Ecology Notes, 5, 33 – 34.en_US
dc.identifier.citedreferenceWeising, K. & Gardner, R. ( 1999 ) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome, 42, 9 – 19.en_US
dc.identifier.citedreferenceBeaumont, M.A., Zhang, W. & Balding, D.J. ( 2002 ) Approximate Bayesian computation in population genetics. Genetics, 162, 2025 – 2035.en_US
dc.identifier.citedreferenceBelkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. ( 2004 ) GENETIX 4.05.2, logiciel sous Windows pour la génétique des populations. Laboratoire Génome, Populations, Interactions, Université Montpellier II, Montpellier, France.en_US
dc.identifier.citedreferenceBush, M.B. & de Oliveira, P.E. ( 2006 ) The rise and fall of the refugial hypothesis of Amazonian speciation: a paleoecological perspective. Biota Neotropica, 6, 1 – 17.en_US
dc.identifier.citedreferenceCavers, S., Navarro, C. & Lowe, A.J. ( 2003 ) Chloroplast DNA phylogeography reveals colonization history of a Neotropical tree, Cedrela odorata L., in Mesoamerica. Molecular Ecology, 12, 1451 – 1460.en_US
dc.identifier.citedreferenceChapuis, M.P. & Estoup, A. ( 2007 ) Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution, 24, 621 – 631.en_US
dc.identifier.citedreferenceClement, M., Posada, D. & Crandall, K.A. ( 2000 ) TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657 – 1659.en_US
dc.identifier.citedreferenceCloutier, D., Povoa, J.S.R., Procopio, L.C., Leao, N.V.M., Wadt, L.H.O., Ciampi, A.Y. & Schoen, D.J. ( 2005 ) Chloroplast DNA variation of Carapa guianensis in the Amazon basin. Silvae Genetica, 54, 270 – 274.en_US
dc.identifier.citedreferenceCloutier, D., Kanashiro, M., Ciampi, A.Y. & Schoen, D.J. ( 2007a ) Impact of selective logging on inbreeding and gene dispersal in an Amazonian tree population of Carapa guianensis Aubl. Molecular Ecology, 16, 797 – 809.en_US
dc.identifier.citedreferenceCloutier, D., Hardy, O.J., Caron, H., Ciampi, A.Y., Degen, B., Kanashiro, M. & Schoen, D.J. ( 2007b ) Low inbreeding and high pollen dispersal distances in populations of two Amazonian forest tree species. Biotropica, 39, 406 – 415.en_US
dc.identifier.citedreferenceColinvaux, P.A., De Oliveira, P.E. & Bush, M.B. ( 2000 ) Amazonian and Neotropical plant communities on glacial time‐scale: the failure of the aridity and refuge hypothesis. Quaternary Science Reviews, 19, 141 – 169.en_US
dc.identifier.citedreferenceColpaert, N., Cavers, S., Bandou, E., Caron, H., Gheysen, G. & Lowe, A.J. ( 2005 ) Sampling tissue for DNA analysis of trees: trunk cambium as an alternative to canopy leaves. Silvae Genetica, 54, 265 – 269.en_US
dc.identifier.citedreferenceCurrat, M., Ruedi, M., Petit, R.J. & Excoffier, L. ( 2008 ) The hidden side of invasions: massive introgression by local genes. Evolution, 62, 1908 – 1920.en_US
dc.identifier.citedreferenceDayanandan, S., Dole, J., Bawa, K. & Kesseli, R. ( 1999 ) Population structure delineated with microsatellite markers in fragmented populations of a tropical tree, Carapa guianensis (Meliaceae). Molecular Ecology, 8, 1585 – 1592.en_US
dc.identifier.citedreferenceDick, C.W., Abdul‐Salim, K. & Bermingham, E. ( 2003 ) Molecular systematic analysis reveals cryptic Tertiary diversification of a widespread tropical rain forest tree. The American Naturalist, 162, 691 – 703.en_US
dc.identifier.citedreferenceDick, C.W., Condit, R. & Bermingham, E. ( 2005 ) Biogeographic history and the high beta diversity of rainforest trees in Panamá. Rio Chagres: a multi‐disciplinary profile of a tropical watershed (ed. by R. Harmon ), pp. 259 – 268. Springer Publishing Company, New York.en_US
dc.identifier.citedreferenceDick, C.W., Bermingham, E., Lemes, M.R. & Gribel, R. ( 2007 ) Extreme long‐distance dispersal of the lowland tropical rainforest tree Ceiba pentandra L. (Malvaceae) in Africa and the Neotropics. Molecular Ecology, 16, 3039 – 3049.en_US
dc.identifier.citedreferenceDrummond, A. & Rambaut, A. ( 2007 ) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.en_US
dc.identifier.citedreferenceDrummond, A.J., Ho, S.Y.W., Phillips, M.J. & Rambaut, A. ( 2006 ) Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, e88.en_US
dc.identifier.citedreferenceDuminil, J., Caron, H., Scotti, I., Cazal, S.O. & Petit, R.J. ( 2006 ) Blind population genetics survey of tropical rainforest trees. Molecular Ecology, 15, 3505 – 3513.en_US
dc.identifier.citedreferenceErsts, P.J. ( 2010 ) Geographic Distance Matrix Generator (version 1.2.3). American Museum of Natural History, Center for Biodiversity and Conservation. Available at: http:biodiversityinformatics.amnh.orgopen_sourcegdmg.en_US
dc.identifier.citedreferenceEvanno, G., Regnaut, S. & Goudet, J. ( 2005 ) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14, 2611 – 2620.en_US
dc.identifier.citedreferenceExcoffier, L. ( 2004 ) Special issue: Analytical methods in phylogeography and genetic structure. Molecular Ecology, 13, 727.en_US
dc.identifier.citedreferenceExcoffier, L., Smouse, P.E. & Quattro, J.M. ( 1992 ) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479 – 491.en_US
dc.identifier.citedreferenceExcoffier, L., Laval, G. & Schneider, S. ( 2005 ) Arlequin version 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47 – 50.en_US
dc.identifier.citedreferenceForget, P.M., Mercier, F. & Collinet, F. ( 1999 ) Spatial patterns of two rodent‐dispersed rain forest trees Carapa procera (Meliaceae) and Vouacapoua americana (Caesalpiniaceae) at Paracou, French Guiana. Journal of Tropical Ecology, 15, 301 – 313.en_US
dc.identifier.citedreferenceGentry, A.H. & Dodson, C.H. ( 1988 ) New species and a new combination for plants from trans‐Andean South America. Annals of the Missouri Botanical Garden, 75, 1434 – 1436.en_US
dc.identifier.citedreferenceGrivet, D., Sebastiani, F., González‐Martínez, S.C. & Vendramin, G.G. ( 2009 ) Patterns of polymorphism resulting from long‐range colonization in the Mediterranean conifer Aleppo pine. New Phytologist, 184, 1016 – 1028.en_US
dc.identifier.citedreferenceGrundmann, H., Hori, S. & Tanner, G. ( 2001 ) Determining confidence intervals when measuring genetic diversity and the discriminatory abilities of typing methods for microorganisms. Journal of Clinical Microbiology, 39, 4190 – 4192.en_US
dc.identifier.citedreferenceHall, P., Orrell, L.C. & Bawa, K.S. ( 1994 ) Genetic diversity and mating system in a tropical tree, Carapa guianensis (Meliaceae). American Journal of Botany, 81, 1104 – 1111.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.