Show simple item record

Winner for outstanding research in the Ph.D. category for the 2013 society for biomaterials meeting and exposition, April 10–13, 2013, Boston, Massachusetts

dc.contributor.authorRao, Rameshwar R.en_US
dc.contributor.authorPeterson, Alexis W.en_US
dc.contributor.authorStegemann, Jan P.en_US
dc.date.accessioned2013-05-02T19:34:57Z
dc.date.available2014-08-01T19:11:34Zen_US
dc.date.issued2013-06en_US
dc.identifier.citationRao, Rameshwar R.; Peterson, Alexis W.; Stegemann, Jan P. (2013). "Winner for outstanding research in the Ph.D. category for the 2013 society for biomaterials meeting and exposition, April 10–13, 2013, Boston, Massachusetts ." Journal of Biomedical Materials Research Part A 101A(6): 1531-1538. <http://hdl.handle.net/2027.42/97449>en_US
dc.identifier.issn1549-3296en_US
dc.identifier.issn1552-4965en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97449
dc.description.abstractModular tissue engineering applies biomaterials‐based approaches to create discrete cell‐seeded microenvironments, which can be further assembled into larger constructs for the repair of injured tissues. In the current study, we embedded human bone marrow‐derived mesenchymal stem cells (MSC) and human adipose‐derived stem cells (ASC) in collagen/fibrin (COL/FIB) and collagen/fibrin/hydroxyapatite (COL/FIB/HA) microbeads, and evaluated their suitability for bone tissue engineering applications. Microbeads were fabricated using a water‐in‐oil emulsification process, resulting in an average microbead diameter of approximately 130 ± 25 μm. Microbeads supported both cell viability and cell spreading of MSC and ASC over 7 days in culture. The embedded cells also began to remodel and compact the microbead matrix as demonstrated by confocal reflectance microscopy imaging. After two weeks of culture in media containing osteogenic supplements, both MSC and ASC deposited calcium mineral in COL/FIB microbeads, but not in COL/FIB/HA microbeads. There were no significant differences between MSC and ASC in any of the assays examined, suggesting that either cell type may be an appropriate cell source for orthopedic applications. This study has implications in the creation of defined microenvironments for bone repair, and in developing a modular approach for delivery of pre‐differentiated cells. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherFibrinen_US
dc.subject.otherStem Cellsen_US
dc.subject.otherCell Therapyen_US
dc.subject.otherCollagenen_US
dc.subject.otherModular Tissue Engineeringen_US
dc.titleWinner for outstanding research in the Ph.D. category for the 2013 society for biomaterials meeting and exposition, April 10–13, 2013, Boston, Massachusettsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arboren_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97449/1/34611_ftp.pdf
dc.identifier.doi10.1002/jbm.a.34611en_US
dc.identifier.sourceJournal of Biomedical Materials Research Part Aen_US
dc.identifier.citedreferenceNichol JW, Khademhosseini A. Modular tissue engineering: Engineering Biological tissues from the bottom up. Soft Matter 2009; 5: 1312 – 1319.en_US
dc.identifier.citedreferenceGao TJ, Lindholm TS, Kommonen B, Ragini P, Paronzini A, Lindholm TC. Enhanced healing of segmental tibial defects in sheep by a composite bone substitute composed of tricalcium phosphate cylinder, bone morphogenetic protein, and type IV collagen. J Biomed Mater Res 1996; 32: 505 – 512.en_US
dc.identifier.citedreferenceJégoux F, Goyenvalle E, Cognet R, Malard O, Moreau F, Daculsi G, Aguado E. Reconstruction of irradiated bone segmental defects with a biomaterial associating MBCP+®, microstructured collagen membrane and total bone marrow grafting: An experimental study in rabbits. J Biomed Mater Res Part A 2009; 91: 1160 – 1169.en_US
dc.identifier.citedreferenceGuda T, Walker JA, Singleton BM, Hernandez JW, Son JS, Kim SG, Oh DS, Appleford M, Ong JL, Wenke JC. Guided bone regeneration in long bone defects with a structural hydroxyapatite graft and collagen membrane. Tissue Eng Part A 2013; Epub Ahead of Print.en_US
dc.identifier.citedreferenceLe Nihouannen D, Saffarzadeh A, Aguado E, Goyenvalle E, Gauthier O, Moreau F, Pilet P, Spaethe R, Daculsi G, Layrolle P. Osteogenic properties of calcium phosphate ceramics and fibrin glue based composites. J Mater Sci Mater Med 2007; 18: 225 – 235.en_US
dc.identifier.citedreferenceDavis HE, Miller SL, Case EM, Leach JK. Supplementation of fibrin gels with sodium chloride enhances physical properties and ensuing osteogenic response. Acta Biomater 2011; 7: 691 – 699.en_US
dc.identifier.citedreferenceMuzzarelli RA, Biagini G, Bellardini M, Simonelli L, Castaldini C, Fratto G. Osteoconduction exerted by methylpyrolidinone chitosan in dental surgery. Biomaterials 1993; 14: 39 – 43en_US
dc.identifier.citedreferenceWang L, Stegemann JP. Glyoxal crosslinking of cell‐seeded chitosan/collagen hydrogels for bone regeneration. Acta Biomater 2011; 7: 2410 – 2417.en_US
dc.identifier.citedreferenceKoo KT, Polimeni G, Qahash M, Kim CK, Wikesjö UM. Periodontal repair in dogs: guided tissue regeneration enhances bone formation in sites implanted with a coral‐derived calcium carbonate biomaterial. J Clin Periodontol 2005; 32: 104 – 110.en_US
dc.identifier.citedreferenceJones JR. Review of bioactive glass‐ from Hench to hybrids. Acta Biomater 2013; 9: 4457 – 4486.en_US
dc.identifier.citedreferenceRao RR, He J, Leach JK. Biomineralized composite substrates increase gene expression with nonviral delivery. J Biomed Mater Res A 2010; 94: 344 – 354.en_US
dc.identifier.citedreferenceGleeson JP, Plunkett NA, O'Brien FJ. Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen‐based scaffold for bone tissue regeneration. Eur Cell Mater 2010; 20: 218 – 230.en_US
dc.identifier.citedreferenceYoshikawa H, Myoui A. Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs 2005; 8: 131 – 136.en_US
dc.identifier.citedreferenceChen M, Wang X, Ye Z, Zhang Y, Zhou Y, Tan WS. A modular approach to the engineering of a centimeter‐sized bone tissue construct with human amniotic mesenchymal stem cells‐laden microcarriers. Biomaterials 2011; 32: 7532 – 7542.en_US
dc.identifier.citedreferenceTang M, Chen W, Weir MD, Thein‐Han W, Xu HH. Human embryonic stem cell encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering. Acta Biomater 2012; 8: 3436 – 3445.en_US
dc.identifier.citedreferenceChen Z, Wang L, Stegemann JP. Phase‐separated chitosan‐fibrin microbeads for cell delivery. J Microencapsul 2011; 28: 344 – 352.en_US
dc.identifier.citedreferenceBatorsky A, Liao J, Lund AW, Plopper GE, Stegemann JP. Encapsulation of adult human mesenchymal stem cells within collagen‐agarose microenvironments. Biotechnol Bioeng 2005; 92: 492 – 500.en_US
dc.identifier.citedreferenceWang L, Rao RR, Stegemann JP. Matrix‐enhanced stem cells embedded in chitosan‐collagen microbeads. Cells, Tissues Organs 2013; [in press].en_US
dc.identifier.citedreferenceLund AW, Bush JA, Plopper GE, Stegemann JP. Osteogenic differentiation of mesenchymal stem cells in defined protein beads. J Biomed Mater Res B Appl Biomater 2008; 87: 213 – 221.en_US
dc.identifier.citedreferenceGudur M, Rao RR, Hsiao YS, Peterson AW, Deng CX, Stegemann JP. Noninvasive, quantitative, spatiotemporal characterization of mineralization in three‐dimensional collagen hydrogels using high‐resolution spectral ultrasound imaging. Tissue Eng Part C. Forthcoming.en_US
dc.identifier.citedreferenceNovosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 2011; 63: 300 – 311.en_US
dc.identifier.citedreferenceFernandez P, Bausch AR. The compaction of gels by cells: A case of collective mechanical activity. Integr Biol (Camb) 2009; 1: 252 – 259.en_US
dc.identifier.citedreferenceDavis HE, Rao RR, He J, Leach JK. Biomimetic scaffolds fabricated from apatite‐coated polymer microspheres. J Biomed Mater Res A 2009; 90: 1021 – 1031.en_US
dc.identifier.citedreferenceLanger R, Vacanti JP. Tissue engineering. Science 1993; 260: 920 – 926.en_US
dc.identifier.citedreferenceSzpalski C, Barbaro M, Sagebin F, Warren SM. Bone tissue engineering: Current strategies and techniques—Part II: Cell types. Tissue Eng Part B Rev 2012; 18: 258 – 269.en_US
dc.identifier.citedreferenceDomev H, Amit M, Laevsky I, Dar A, Itskovitz‐Eldor J. Efficient engineering of vascularized ectopic bone from human embryonic stem cell‐derived mesenchymal stem cells. Tissue Eng Part A 2012; 18: 2290 – 2302.en_US
dc.identifier.citedreferenceThein‐Han W, Xu HH. Collagen‐calcium phosphate cement scaffolds seeded with umbilical cord stem cells for bone tissue engineering. Tissue Eng Part A 2011; 17: 2943 – 2954.en_US
dc.identifier.citedreferenceAtari M, Caballé‐Serrano J, Gil‐Recio C, Giner‐Delgado C, Martínez‐Sarrà E, García‐Fernández DA, Barajas M, Hernández‐Alfaro F, Ferrés‐Padró E, Giner‐Tarrida L. The enhancement of osteogenesis through the use of dental pulp pluripotent stem cells in 3D. Bone 2012; 50: 930 – 941.en_US
dc.identifier.citedreferenceLee K, Chan CK, Patil N, Goodman SB. Cell therapy for bone regeneration—Bench to bedside. J Biomed Mater Res B Appl Biomater 2009; 89: 252 – 263.en_US
dc.identifier.citedreferenceWang J, Yang Q, Mao C, Zhang S. Osteogenic differentiation of bone marrow mesenchymal stem cells on the collagen/silk fibroin bi‐template‐induced biomimetic bone substitutes. J Biomed Mater Res 2012; 100: 2929 – 2938.en_US
dc.identifier.citedreferenceHattori H, Masuoka K, Sato M, Ishihara M, Asazuma T, Takase B, Kikuchi M, Nemoto K, Ishihara M. Bone formation using human adipose tissue‐derived stromal cells and a biodegradable scaffold. J Biomed Mater Res B Appl Biomater 2006; 76: 230 – 239.en_US
dc.identifier.citedreferenceEnglish K, Mahon BP. Allogeneic mesenchymal stem cells: Agents of immune modulation. J Cell Biochem 2011; 8: 1963 – 1968.en_US
dc.identifier.citedreferenceGir P, Oni G, Brown SA, Mojallal A, Rohrich RJ. Human adipose stem cells: Current clinical applications. Plast Reconstr Surg 2012; 129: 1277 – 1290.en_US
dc.identifier.citedreferenceStrioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue‐derived versus bone marrow‐derived mesenchymal stem and stromal cells. Stem Cells Dev 2012; 21: 2724 – 2752.en_US
dc.identifier.citedreferenceShafiee A, Seyedjafari E, Soleimani M, Ahmadbeigi N, Dinarvand P, Ghaemi N. A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotechnol Lett 2011; 33: 1257 – 1264.en_US
dc.identifier.citedreferenceMiyazaki M, Zuk PA, Zou J, Yoon SH, Wei F, Morishita Y, Sintuu C, Wang JC. Comparison of human mesenchymal stem cells derived from adipose tissue and bone marrow for ex vivo gene therapy in rat spinal fusion model. Spine 2008; 33: 863 – 869.en_US
dc.identifier.citedreferenceNoël D, Caton D, Roche S, Bony C, Lehmann S, Casteilla L, Jorgensen C, Cousin B. Cell specific differences between human adipose‐derived and mesenchymal‐stromal cells despite similar differentiation potentials. Exp Cell Res 2008; 314: 1575 – 1584.en_US
dc.identifier.citedreferenceDe Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH. Comparison of multi‐lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003; 174: 101 – 109.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.