Show simple item record

Characterization of middle‐atmosphere polar warming at Mars

dc.contributor.authorMcDunn, T.en_US
dc.contributor.authorBougher, S.en_US
dc.contributor.authorMurphy, J.en_US
dc.contributor.authorKleinböhl, A.en_US
dc.contributor.authorForget, F.en_US
dc.contributor.authorSmith, M.en_US
dc.date.accessioned2013-05-02T19:35:19Z
dc.date.available2014-03-03T15:09:25Zen_US
dc.date.issued2013-02en_US
dc.identifier.citationMcDunn, T.; Bougher, S.; Murphy, J.; Kleinböhl, A. ; Forget, F.; Smith, M. (2013). "Characterization of middleâ atmosphere polar warming at Mars." Journal of Geophysical Research: Planets 118(2): 161-178. <http://hdl.handle.net/2027.42/97505>en_US
dc.identifier.issn2169-9097en_US
dc.identifier.issn2169-9100en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97505
dc.description.abstractWe characterize middle‐atmosphere polar warming (PW) using nearly three Martian years of temperature observations by the Mars Climate Sounder. We report the observed structure of PW and share hypotheses as to possible explanations, which have yet to be tested with global dynamical models. In the data, PW manifested between p  = 15 Pa and p  = 4.8×10 –3  Pa. The latitude where PW maximized shifted poleward with decreasing pressure. The nightside magnitude was larger than the dayside magnitude. The maximum nightside magnitudes ranged from 22 to 67 K. As expected, the annual maximum magnitude in the north occurred during late‐local fall to middle‐local winter. In the south it occurred during late‐local winter. Also as expected, the maximum magnitude near MY 28's southern winter solstice was smaller than that at that same year's northern winter solstice, when a global dust storm was occurring. Unexpectedly, the maximum magnitude at southern winter solstice was comparable to that at northern winter solstice for both MY 29 and MY 30, years that did not experience global dust storms but certainly experienced greater dust loading during L s  = 270° than L s  = 90°. Another unexpected result was a hemispheric asymmetry in PW magnitude during most of the observed equinoxes. This paper also provides tables of (1) averaged temperatures as a function of latitude, pressure, and season, and (2) the maximum polar warming features as a function of pressure and season. These tables can be used to validate GCM calculations of middle‐atmosphere temperatures and constrain calculations of unobserved winds. Key Points Polar warming is characterized based on nearly three MYs of MCS temperatures Average temperatures are provided for validation of modeled temperatures Polar warming characteristics are provided for constraint of modeled windsen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMars, Atmosphereen_US
dc.subject.otherMiddle Atmosphereen_US
dc.subject.otherPolar Warmingen_US
dc.titleCharacterization of middle‐atmosphere polar warming at Marsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97505/1/jgre20016.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97505/2/SPICAM_temperatures_v_latitude.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97505/3/PolarWarming_CrossSections_Dayside.pdf
dc.identifier.doi10.1002/jgre.20016en_US
dc.identifier.sourceJournal of Geophysical Research: Planetsen_US
dc.identifier.citedreferenceMcCleese, D. J., et al. ( 2010 ), The structure and dynamics of the martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust and water ice aerosols, J. Geophys. Res., 115 ( E12016 ), doi: 10.1029/2010JE003677.en_US
dc.identifier.citedreferenceKellogg, W. W., and G. F. Schilling ( 1951 ), A proposed model of the circulation in the upper stratosphere, J. Meteorology, 8, 222 – 230.en_US
dc.identifier.citedreferenceKleinböhl, A., et al. ( 2009 ), Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity, J. Geophys. Res., 114 ( E10006 ), doi: 10.1029/2009JE00358.en_US
dc.identifier.citedreferenceKleinböhl, A., J. T. Schofield, W. A. Abdou, P. G. J. Irwin, and R. J. de Kok ( 2011 ), A single‐scattering approximation for infrared radiative transfer in limb geometry in the martian atmosphere, J. Quant. Spectrosc. Radiat. Transfer, 112, 1568 – 1580, doi: 10.1016/j.jqsrt.2011.03.006.en_US
dc.identifier.citedreferenceKuroda, T., A. Medvedev, P. Hartogh, and M. Takahashi ( 2009 ), On forcing the winter polar warmings in the martian middle atmosphere during dust storms, J. Meteorol. Soc. Japan, 87, 913 – 921, doi: 10.2151/jmsj.87.913.en_US
dc.identifier.citedreferenceLee, C., et al. ( 2009 ), Thermal tides in the martian middle atmosphere as seen by the Mars Climate Sounder, J. Geophys. Res., 114 ( E03005 ), doi: 10.1029/2008JE003285.en_US
dc.identifier.citedreferenceLeovy, C. B. ( 1964 ), Simple models of thermally driven mesospheric circulations, J. Atmos. Sci., 21, 327 – 341.en_US
dc.identifier.citedreferenceMartin, T. Z., and H. H. Kieffer ( 1979 ), Thermal infrared properties of the martian atmosphere 2. The 15‐ μ m band measurements, J. Geophys. Res., 84 ( B6 ), 2843 – 2852.en_US
dc.identifier.citedreferenceMcCleese, D. J., et al. ( 2007 ), Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions, J. Geophys. Res., 112 ( E05S06 ), doi: 10.1029/2006JE002790.en_US
dc.identifier.citedreferenceMcCleese, D. J., et al. ( 2008 ), Intense polar temperature inversion in the middle atmosphere on Mars, Nature Geoscience, 1, 745 – 749, doi: 10.1038/ngeo332.en_US
dc.identifier.citedreferenceMcDunn, T. L., S. W. Bougher, J. Murphy, M. D. Smith, F. Forget, J.‐L. Bertaux, and F. Montmessin ( 2010 ), Simulating the density and thermal structure of the middle atmosphere ( 80‐130 km) of Mars using the MGCM‐MTGCM: A comparison with MEX/SPICAM observations, ICARUS, 206, 5 – 17, doi: 10.1016/j.icarus.2009.06.034.en_US
dc.identifier.citedreferenceMedvedev, A., E. Yigit, and P. Hartogh ( 2011 ), Estimates of gravity wave drag on Mars: Indication of a possible lower thermospheric wind reversal, Icarus, 211, 909 – 912, doi: 10.1016/j.icarus2010.10.013.en_US
dc.identifier.citedreferenceMedvedev, A. S., and P. Hartogh ( 2007 ), Winter polar warmings and the meridional transport on Mars simulated with a general circulation model, ICARUS, 186, 97 – 110, doi: 10.1016/j.icarus.2006.08.020.en_US
dc.identifier.citedreferenceMontmessin, F., et al. ( 2006 ), Subvisible co 2 ice clouds detected in the mesosphere of Mars, Icarus, 183, 403 – 410, doi: 10.1016/j.icarus.2006.03.015.en_US
dc.identifier.citedreferenceQuémerais, E., J.‐L. Bertaux, O. Korablev, E. Dimarellis, C. Cot, B. R. Sandel, and D. Fussen ( 2006 ), Stellar occultations observed by SPICAM on Mars Express, J. Geophys. Res., 111 ( E09S04 ), doi: 10.1029/2005JE002604.en_US
dc.identifier.citedreferenceRichardson, M. I., and R. J. Wilson ( 2002 ), A topographically forced asymmetry in the martian circulation and climate, Nature, 416, 298 – 301.en_US
dc.identifier.citedreferenceSantee, M., and D. Crisp ( 1993 ), Thermal structure an dust loading of the martian atmosphere during late southern summer: Mariner 9 revisited, J. Geophys. Res., 98 ( E2 ), 3261 – 3279.en_US
dc.identifier.citedreferenceSchneider, E. K. ( 1983 ), Martian great dust storms: Interpretive axially symmetric models, ICARUS, 55, 302 – 331.en_US
dc.identifier.citedreferenceSmith, M. D., J. C. Pearl, B. J. Conrath, and P. R. Christensen ( 2001 ), Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution, J. Geophys. Res., 106 ( E10 ), 23,929 – 23,945, doi: 10.1029/2000JE001321.en_US
dc.identifier.citedreferenceThéodore, B., E. Lellouch, E. Chassefière, and A. Hauchecorne ( 1993 ), Solstitial temperature inversions in the martian middle atmosphere: Observational clues and 2‐D modeling, ICARUS, 105, 512 – 528.en_US
dc.identifier.citedreferenceTolson, R. H., G. Keating, R. Zurek, S. Bougher, C. Justus, and D. Fritts ( 2007 ), Application of accelerometer data to atmospheric modeling during Mars aerobraking operations, J. Spacecraft and Rockets, 44 ( 6 ), 1172 – 1179, doi: 10.2514/1.28472.en_US
dc.identifier.citedreferenceWilson, R. J. ( 1997 ), A general circulation model simulation of the martian polar warming, Geophys. Res. Lett., 24 ( 2 ), 123 – 126.en_US
dc.identifier.citedreferenceBarnes, J. R. ( 1990 ), Possible effects of breaking gravity waves on the circulation of the middle atmosphere of Mars, J. Geophys. Res., 95 ( B2 ), 1401 – 1421, doi: 10.1029/JB095iB02p01401.en_US
dc.identifier.citedreferenceBarnes, J. R., and J. L. Hollingsworth ( 1987 ), Dynamical modeling of a planetary wave mechanism for a martian polar warming, Icarus, 71, 313 – 334.en_US
dc.identifier.citedreferenceBell, J. M., S. W. Bougher, and J. R. Murphy ( 2007 ), Vertical dust mixing and the interannual variations in the Mars thermosphere, J. Geophys. Res., 112 ( E12002 ), doi: 10.1029/2006JE002856.en_US
dc.identifier.citedreferenceBertaux, J.‐L., et al. ( 2006 ), SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results, J. Geophys. Res., 111 ( E10S90 ), doi:2012JE004045/2006JE002690.en_US
dc.identifier.citedreferenceBougher, S. W., J. M. Bell, J. R. Murphy, M. A. López‐Valverde, and P. G. Withers ( 2006 ), Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions, Geophys. Res. Lett., 33 ( L02203 ), doi: 10.1029/2005GL024059.en_US
dc.identifier.citedreferenceConrath, B., R. Curran, R. Hanel, V. Kunde, W. Maguire, J. Pearl, J. Pirraglia, J. Welker, and T. Burke ( 1973 ), Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9, J. Geophys. Res., 78 ( 20 ), 4267 – 4278.en_US
dc.identifier.citedreferenceConrath, B. J. ( 1981 ), Planetary‐scale wave structure in the martian atmosphere, Icarus, 48, 246 – 255.en_US
dc.identifier.citedreferenceDeming, D., M. J. Mumma, F. Espenak, T. Kostiuk, and D. Zipoy ( 1986 ), Polar warming in the middle atmosphere of Mars, ICARUS, 66, 366 – 379.en_US
dc.identifier.citedreferenceForget, F., F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S. R. Lewis, P. L. Read, and J.‐P. Huot ( 1999 ), Improved general circulation models of the martian atmosphere from the surface to above 80 km, J. Geophys. Res., 104, 24,155 – 24,176, doi: 10.1029/1999JE001025.en_US
dc.identifier.citedreferenceForget, F., F. Montmessin, J.‐L. Bertaux, F. Gonzalez‐Gálindo, S. Lebonnois, E. Quémerais, A. Reberac, E. Dimarellis, and M. A. López‐Valverde ( 2009 ), Density and temperatures of the upper martian atmosphere measured by stellar occultations with Mars Express SPICAM, J. Geophys. Res., 114 ( E01004 ), doi: 10.1029/2008JE003086.en_US
dc.identifier.citedreferenceGonzález‐Galindo, F., F. Forget, M. A. López‐Valverde, M. Angelats i Coll, and E. Millour ( 2009a ), A ground‐to‐exosphere martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures, J. Geophys. Res., 114 ( E04001 ), doi: 10.1029/2008JE003246.en_US
dc.identifier.citedreferenceGonzález‐Galindo, F., F. Forget, M. A. López‐Valverde, and M. Angelats i Coll ( 2009b ), A ground‐to‐exosphere martian general circulation model: 2. Atmosphere during solstice conditions ‐ Thermospheric polar warming, J. Geophys. Res., 114 ( E08004 ), doi: 10.1029/2008JE003277.en_US
dc.identifier.citedreferenceHartogh, P., A. S. Medvedev, and C. Jarchow ( 2007 ), Middle atmosphere polar warmings on Mars: Simulations and study on the validation with sub‐millimeter observations, Plan. and Space Sci., 55, 1103 – 1112, doi: 10.1016/j.pss.2006.11.018.en_US
dc.identifier.citedreferenceHeavens, N. G., M. I. Richardson, W. G. Lawson, D. J. McCleese, D. M. Kass, A. Kleinböhl, J. T. Schofield, W. A. Abdou, and J. H. Shirley ( 2010 ), Convective instability in the martian middle atmosphere, ICARUS, 208, 574 – 589, doi: 10.1016/j.icarus.2010.03.023.en_US
dc.identifier.citedreferenceHeavens, N. G., D. J. McCleese, M. I. Richardson, D. M. Kass, A. Kleinböhl, and J. T. Schofield ( 2011 ), Structure and dynamics of the martian lower and middle atmosphere as observed by the Mars Climate Sounder: 2. Implications of the thermal structure and aerosol distributions for the mean meridional circulation, J. Geophsy. Res., 116 ( E01010 ), doi: 10.1029/2010JE003713.en_US
dc.identifier.citedreferenceHolton, J. R. ( 1982 ), The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere, J. Atmos. Sci., 39, 791 – 799.en_US
dc.identifier.citedreferenceJakosky, B. M., and T. Z. Martin ( 1987 ), Mars: North‐polar atmospheric warming during dust storms, Icarus, 72, 528 – 534.en_US
dc.identifier.citedreferenceJakosky, B. M., J. Grebowsky, and D. Mitchell ( 2012 ), The 2013 Mars Atmospheric and Volatile EvolutioN (MAVEN) Mission, in 25th Mars Exploration Program Analysis Group (http://mepag/meeting/feb‐12/index.html), Washington, D.C.en_US
dc.identifier.citedreferenceKeating, G. M., M. E. Theriot, R. H. Tolson, S. W. Bougher, F. Forget, M. Angelats i Coll, and J. M. Forbes ( 2003 ), Recent detection of winter polar warming in the Mars upper atmosphere, in The Third International Mars Polar Science Conference, pp. 8033–+, Pasadena, California.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.